129 research outputs found

    Social working memory: neurocognitive networks and directions for future research.

    Get PDF
    Navigating the social world requires the ability to maintain and manipulate information about people's beliefs, traits, and mental states. We characterize this capacity as social working memory (SWM). To date, very little research has explored this phenomenon, in part because of the assumption that general working memory systems would support working memory for social information. Various lines of research, however, suggest that social cognitive processing relies on a neurocognitive network (i.e., the "mentalizing network") that is functionally distinct from, and considered antagonistic with, the canonical working memory network. Here, we review evidence suggesting that demanding social cognition requires SWM and that both the mentalizing and canonical working memory neurocognitive networks support SWM. The neural data run counter to the common finding of parametric decreases in mentalizing regions as a function of working memory demand and suggest that the mentalizing network can support demanding cognition, when it is demanding social cognition. Implications for individual differences in social cognition and pathologies of social cognition are discussed

    Why social pain can live on: Different neural mechanisms are associated with reliving social and physical pain

    Get PDF
    Although social and physical pain recruit overlapping neural activity in regions associated with the affective component of pain, the two pains can diverge in their phenomenology. Most notably, feelings of social pain can be re-experienced or relived, even when the painful episode has long passed, whereas feelings of physical pain cannot be easily relived once the painful episode subsides. Here, we observed that reliving social (vs. physical) pain led to greater self-reported re-experienced pain and greater activity in affective pain regions (dorsal anterior cingulate cortex and anterior insula). Moreover, the degree of relived pain correlated positively with affective pain system activity. In contrast, reliving physical (vs. social) pain led to greater activity in the sensory-discriminative pain system (primary and secondary somatosensory cortex and posterior insula), which did not correlate with relived pain. Preferential engagement of these different pain mechanisms may reflect the use of different top-down neurocognitive pathways to elicit the pain. Social pain reliving recruited dorsomedial prefrontal cortex, often associated with mental state processing, which functionally correlated with affective pain system responses. In contrast, physical pain reliving recruited inferior frontal gyrus, known to be involved in body state processing, which functionally correlated with activation in the sensory pain system. These results update the physical-social pain overlap hypothesis: while overlapping mechanisms support live social and physical pain, distinct mechanisms guide internally-generated pain. © 2015 Meyer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The Default Mode of Human Brain Function Primes the Intentional Stance

    Get PDF
    ■ Humans readily adopt an intentional stance to other people, comprehending their behavior as guided by unobservable mental states such as belief, desire, and intention. We used fMRI in healthy adults to test the hypothesis that this stance is primed by the de-fault mode of human brain function present when the mind is at rest. We report three findings that support this hypothesis. First, brain regions activated by actively adopting an intentional rather than nonintentional stance to a social stimulus were anatomically similar to those demonstrating default responses to fixation base-line in the same task. Second, moment-to-moment variation in default activity during fixation in the dorsomedial PFC was re-lated to the ease with which participants applied an intentional— but not nonintentional—stance to a social stimulus presentedmo-ments later. Finally, individuals who showed stronger dorsomedial PFC activity at baseline in a separate task were generally more ef-ficient when adopting the intentional stance and reported having greater social skills. These results identify a biological basis for the human tendency to adopt the intentional stance. More broadly, they suggest that the brain’s default mode of function may have evolved, in part, as a response to life in a social world.

    The Default Mode of Human Brain Function Primes the Intentional Stance

    Get PDF
    Humans readily adopt an intentional stance to other people, comprehending their behavior as guided by unobservable mental states such as belief, desire, and intention. We used fMRI in healthy adults to test the hypothesis that this stance is primed by the default mode of human brain function present when the mind is at rest. We report three findings that support this hypothesis. First, brain regions activated by actively adopting an intentional rather than nonintentional stance to a social stimulus were anatomically similar to those demonstrating default responses to fixation baseline in the same task. Second, moment-to-moment variation in default activity during fixation in the dorsomedial PFC was related to the ease with which participants applied an intentional—but not nonintentional—stance to a social stimulus presented moments later. Finally, individuals who showed stronger dorsomedial PFC activity at baseline in a separate task were generally more efficient when adopting the intentional stance and reported having greater social skills. These results identify a biological basis for the human tendency to adopt the intentional stance. More broadly, they suggest that the brain's default mode of function may have evolved, in part, as a response to life in a social world

    Preliminary investigation of the influence of dopamine regulating genes on social working memory

    Get PDF
    Working memory (WM) refers to mental processes that enable temporary retention and manipulation of information, including information about other people (“social working memory”). Previous studies have demonstrated that nonsocial WM is supported by dopamine neurotransmission. Here, we investigated in 131 healthy adults whether dopamine is similarly involved in social WM by testing whether social and nonsocial WM are influenced by genetic variants in three genes coding for molecules regulating the availability of dopamine in the brain: catechol-O-methyltransferase (COMT), dopamine active transporter (DAT), and monoamine-oxidase A (MAOA). An advantage for the Met allele of COMT was observed in the two standard WM tasks and in the social WM task. However, the influence of COMT on social WM performance was not accounted for by its influence on either standard WM paradigms. There was no main effect of DAT1 or MAOA, but a significant COMT x DAT1 interaction on social WM performance. This study provides novel preliminary evidence of effects of genetic variants of the dopamine neurotransmitter system on social cognition. The results further suggest that the effects observed on standard WM do not explain the genetic effects on effortful social cognition

    A Conserved Developmental Patterning Network Produces Quantitatively Different Output in Multiple Species of Drosophila

    Get PDF
    Differences in the level, timing, or location of gene expression can contribute to alternative phenotypes at the molecular and organismal level. Understanding the origins of expression differences is complicated by the fact that organismal morphology and gene regulatory networks could potentially vary even between closely related species. To assess the scope of such changes, we used high-resolution imaging methods to measure mRNA expression in blastoderm embryos of Drosophila yakuba and Drosophila pseudoobscura and assembled these data into cellular resolution atlases, where expression levels for 13 genes in the segmentation network are averaged into species-specific, cellular resolution morphological frameworks. We demonstrate that the blastoderm embryos of these species differ in their morphology in terms of size, shape, and number of nuclei. We present an approach to compare cellular gene expression patterns between species, while accounting for varying embryo morphology, and apply it to our data and an equivalent dataset for Drosophila melanogaster. Our analysis reveals that all individual genes differ quantitatively in their spatio-temporal expression patterns between these species, primarily in terms of their relative position and dynamics. Despite many small quantitative differences, cellular gene expression profiles for the whole set of genes examined are largely similar. This suggests that cell types at this stage of development are conserved, though they can differ in their relative position by up to 3–4 cell widths and in their relative proportion between species by as much as 5-fold. Quantitative differences in the dynamics and relative level of a subset of genes between corresponding cell types may reflect altered regulatory functions between species. Our results emphasize that transcriptional networks can diverge over short evolutionary timescales and that even small changes can lead to distinct output in terms of the placement and number of equivalent cells

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio
    corecore