28 research outputs found

    Implications of leg length for metabolic health and fitness

    Get PDF
    BACKGROUND AND OBJECTIVES: Several studies have linked longer legs with favorable adult metabolic health outcomes and greater offspring birth weight. A recent Mendelian randomization study suggested a causal link between height and cardiometabolic risk; however, the underlying reasons remain poorly understood. METHODOLOGY: Using a cross-sectional design, we tested in a convenience sample of 70 healthy young women whether birth weight and tibia length as markers of early-life conditions associated more strongly with metabolically beneficial traits like organ size and skeletal muscle mass (SMM) than a statistically derived height-residual variable indexing later, more canalized growth. RESULTS: Consistent with the ‘developmental origins of health and disease’ hypothesis, we found relatively strong associations of tibia length—but not birth weight—with adult organ size, brain size, SMM and resting energy expenditure measured by magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry and indirect calorimetry, respectively. CONCLUSIONS AND IMPLICATIONS: Building on prior work, these results suggest that leg length is a sensitive marker of traits directly impacting metabolic and reproductive health. Alongside findings in the same sample relating tibia length and height-residual to MRI-measured pelvic dimensions, we suggest there may exist a degree of coordination in the development of long bone, lean mass and pelvic traits, possibly centered on early, pre-pubertal growth periods. Such phenotypic coordination has important implications for fitness, serving to benefit both adult health and the health of offspring in subsequent generations

    Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets.

    Get PDF
    BACKGROUND: Plant-based diets (PBDs) are increasingly recommended for human and planetary health. However, comprehensive evidence on the health effects of PBDs in children remains incomplete, particularly in vegans. OBJECTIVES: To quantify differences in body composition, cardiovascular risk, and micronutrient status of vegetarian and vegan children relative to omnivores and to estimate prevalence of abnormal micronutrient and cholesterol status in each group. METHODS: In a cross-sectional study, Polish children aged 5-10 y (63 vegetarian, 52 vegan, 72 matched omnivores) were assessed using anthropometry, deuterium dilution, DXA, and carotid ultrasound. Fasting blood samples, dietary intake, and accelerometry data were collected. RESULTS: All results are reported relative to omnivores. Vegetarians had lower gluteofemoral adiposity but similar total fat and lean mass. Vegans had lower fat indices in all regions but similar lean mass. Both groups had lower bone mineral content (BMC). The difference for vegetarians attenuated after accounting for body size but remained in vegans (total body minus the head: -3.7%; 95% CI: -7.0, -0.4; lumbar spine: -5.6%; 95% CI: -10.6, -0.5). Vegetarians had lower total cholesterol, HDL, and serum B-12 and 25-hydroxyvitamin D [25(OH)D] without supplementation but higher glucose, VLDL, and triglycerides. Vegans were shorter and had lower total LDL (-24 mg/dL; 95% CI: -35.2, -12.9) and HDL (-12.2 mg/dL; 95% CI: -17.3, -7.1), high-sensitivity C-reactive protein, iron status, and serum B-12 (-217.6 pmol/L; 95% CI: -305.7, -129.5) and 25(OH)D without supplementation but higher homocysteine and mean corpuscular volume. Vitamin B-12 deficiency, iron-deficiency anemia, low ferritin, and low HDL were more prevalent in vegans, who also had the lowest prevalence of high LDL. Supplementation resolved low B-12 and 25(OH)D concentrations. CONCLUSIONS: Vegan diets were associated with a healthier cardiovascular risk profile but also with increased risk of nutritional deficiencies and lower BMC and height. Vegetarians showed less pronounced nutritional deficiencies but, unexpectedly, a less favorable cardiometabolic risk profile. Further research may help maximize the benefits of PBDs in children

    Estimating body mass and composition from proximal femur dimensions using dual energy x-ray absorptiometry.

    Get PDF
    Body mass prediction from the skeleton most commonly employs femoral head diameter (FHD). However, theoretical predictions and empirical data suggest the relationship between mass and FHD is strongest in young adults, that bone dimensions reflect lean mass better than body or fat mass and that other femoral measurements may be superior. Here, we generate prediction equations for body mass and its components using femoral head, neck and proximal shaft diameters and body composition data derived from dual-energy x-ray absorptiometry (DXA) scans of young adults (n = 155, 77 females and 78 males, mean age 22.7 ± 1.3 years) from the Andhra Pradesh Children and Parents Study, Hyderabad, India. Sex-specific regression of log-transformed data on femoral measurements predicted lean mass with smaller standard errors of estimate (SEEs) than body mass (12-14% and 16-17% respectively), while none of the femoral measurements were significant predictors of fat mass. Subtrochanteric mediolateral shaft diameter gave lower SEEs for lean mass in both sexes and for body mass in males than FHD, while FHD was a better predictor of body mass in women. Our results provide further evidence that lean mass is more closely related to proximal femur dimensions than body or fat mass and that proximal shaft diameter is a better predictor than FHD of lean but not always body mass. The mechanisms underlying these relationships have implications for selecting the most appropriate measurement and reference sample for estimating body or lean mass, which also depend on the question under investigation.This work was funded by a British Academy International Partnership and Mobility Scheme Grant to EP and VM, and a Leverhulme Trust/Isaac Newton Trust Early Career Fellowship to EP. The third survey wave of APCAPS data collection was supported by a Wellcome Trust Strategic Award (grant no. 084774) and subsidised access to DXA scan facilities given by the National Institute of Nutrition (Directors), Indian Council for Medical Research. TJC was funded by MRC grant MR/M012069/1

    Epigenetic Regulation of Tumor Suppressors by Helicobacter pylori Enhances EBV-Induced Proliferation of Gastric Epithelial Cells

    Get PDF
    Helicobacter pylori and Epstein-Barr virus (EBV) are two well-known contributors to cancer and can establish lifelong persistent infection in the host. This leads to chronic inflammation, which also contributes to development of cancer. Association with H. pylori increases the risk of gastric carcinoma, and coexistence with EBV enhances proliferation of infected cells. Further, H. pylori-EBV coinfection causes chronic inflammation in pediatric patients. We have established an H. pylori-EBV coinfection model system using human gastric epithelial cells. We showed that H. pylori infection can increase the oncogenic phenotype of EBV-infected cells and that the cytotoxin-associated gene (CagA) protein encoded by H. pylori stimulated EBV-mediated cell proliferation in this coinfection model system. This led to increased expression of DNA methyl transferases (DNMTs), which reprogrammed cellular transcriptional profiles, including those of tumor suppressor genes (TSGs), through hypermethylation. These findings provide new insights into a molecular mechanism whereby cooperativity between two oncogenic agents leads to enhanced oncogenic activity of gastric cancer cells

    A life history perspective on athletes with low energy availability

    No full text
    The energy costs of athletic training can be substantial, and deficits arising from costs unmet by adequate energy intake, leading to a state of low energy availability, may adversely impact athlete health and performance. Life history theory is a branch of evolutionary theory that recognizes that the way the body uses energy—and responds to low energy availability—is an evolved trait. Energy is a finite resource that must be distributed throughout the body to simultaneously fuel all biological processes. When energy availability is low, insufficient energy may be available to equally support all processes. As energy used for one function cannot be used for others, energetic “trade-offs” will arise. Biological processes offering the greatest immediate survival value will be protected, even if this results in energy being diverted away from others, potentially leading to their downregulation. Athletes with low energy availability provide a useful model for anthropologists investigating the biological trade-offs that occur when energy is scarce, while the broader conceptual framework provided by life history theory may be useful to sport and exercise researchers who investigate the influence of low energy availability on athlete health and performance. The goals of this review are: (1) to describe the core tenets of life history theory; (2) consider trade-offs that might occur in athletes with low energy availability in the context of four broad biological areas: reproduction, somatic maintenance, growth, and immunity; and (3) use this evolutionary perspective to consider potential directions for future research

    Evaluation of dual-energy X-ray absorptiometry compared to magnetic resonance imaging for collecting measurements of the human bony pelvis.

    Get PDF
    Funder: Parkes Foundation; Id: http://dx.doi.org/10.13039/100009691OBJECTIVES: Imaging methods to measure the human pelvis in vivo provide opportunities to better understand pelvic variation and adaptation. Magnetic resonance imaging (MRI) provides high-resolution images, but is more expensive than dual-energy X-ray absorptiometry (DXA). We sought to compare pelvic breadth measurements collected from the same individuals using both methods, to investigate if there are systematic differences in pelvic measurement between these imaging methods. METHODS: Three pelvic breadth dimensions (bi-iliac breadth, bi-acetabular breadth, medio-lateral inlet breadth) were collected from MRI and DXA scans of a cross-sectional sample of healthy, nulliparous adult women of South Asian ancestry (n = 63). Measurements of MRI and DXA pelvic dimensions were collected four times in total, with one baseline data collection session and three replications. Data collected from these sessions were averaged, used to calculate technical error of measurement and entered into a Bland-Altman analysis. Linear regression models were fitted with a given MRI pelvic measurement regressed on the same measurement collected from DXA scans, as well as MRI mean bias regressed on DXA mean bias. RESULTS: Technical error of measurement was higher in DXA measurements of bi-iliac breadth and medio-lateral pelvic inlet breadth and higher for MRI measurements of bi-acetabular breadth. Bland Altman analyses showed no statistically significant relationship between the mean bias of MRI and DXA, and the differences between MRI and DXA pelvic measurements. CONCLUSIONS: DXA measurements of pelvic breadth are comparable to MRI measurements of pelvic breadth. DXA is a less costly imaging technique than MRI and can be used to collect measurements of skeletal elements in living people

    Gestational diabetes mellitus, pre-pregnancy body mass index, and gestational weight gain as risk factors for increased fat mass in Brazilian newborns.

    No full text
    BackgroundGestational diabetes mellitus (GDM) is a common complication of pregnancy. It may predispose offspring to increased fat mass (FM) and the development of obesity, however few data from Latin America exist.ObjectiveTo investigate the influence of GDM on newborn FM in mother-newborn pairs recruited from a public maternity care center in São Paulo, Brazil.MethodsData were collected cross-sectionally in 2013-2014 from 72 mothers diagnosed with GDM, and 211 mothers with normal glucose tolerance (NGT). Newborn FM was evaluated by air-displacement plethysmography (PEA POD), and relevant demographic and obstetric data were collected from hospital records. Associations between maternal GDM status and newborn FM were investigated by multiple linear regression analysis, with adjustment for maternal age, pre-pregnancy BMI, gestational weight gain, type of delivery, sex of the child, and gestational age.ResultsFM was greater in GDM versus NGT newborns in a bivariable model (Median (IQR), GDM: 0.35 (0.3) kg vs. NGT: 0.27 (0.2) kg, p = 0.02), however GDM status was not a significant predictor of FM with adjustment for other variables. Rather, pre-pregnancy BMI (coefficient (β) 1.46; 95% confidence interval (CI) 0.66, 2.27), gestational weight gain (β 1.32; 95% CI 0.49, 2.15), and male sex (β -17.8; 95% CI -27.2, -8.29) predicted newborn FM. Analyzing GDM and NGT groups separately, pre-pregnancy BMI (β 6.75; 95% CI 2.36, 11.1) and gestational weight gain (β 5.64; 95% CI 1.16, 10.1) predicted FM in the GDM group, while male sex alone predicted FM in the NGT group (β -12.3; 95% CI -18.3, -6.34).ConclusionsCombined model results suggest that in our cohort, pre-pregnancy BMI and gestational weight gain are more important risk factors for increased neonatal FM than GDM. However, group-specific model results suggest that GDM status may contribute to variation in the relationship between maternal/offspring factors and FM. Our use of a binary GDM variable in the combined model may have precluded clearer results on this point. Prospective cohort studies including data on maternal pre-pregnancy BMI, GWG, and glycemic profile are needed to better understand associations among these variables and their relative influence on offspring FM

    The skeletal muscle response to energy deficiency: a life history perspective

    No full text
    Energy is a finite resource that is competitively distributed among the body’s systems and biological processes. During times of scarcity, energetic “trade-offs” may arise if less energy is available than is required to optimally sustain all systems. More immediately essential functions are predicted to be prioritized, even if this necessitates the diversion of energy away from – and potential downregulation of – others. These concepts are encompassed within life history theory, an evolutionary framework with considerable potential to enhance understanding of the evolved biological response to periods of energy deficiency. Skeletal muscle is a particularly interesting tissue to investigate from this perspective, given that it is one of the largest and most energetically costly tissues within the body. It is also highly plastic, responsive to a broad range of stimuli, and contributes to many essential bodily functions, e.g., mechanical, regulatory and storage. These functions may be traded off against each other during periods of energy deficiency, with the nature of the trade-off’s dependent on the characteristics of the individual and the circumstances within which the deficit occurs. In this review, we consider the skeletal muscle response to periods of energy deficiency from a life history perspective, along with how this response may be influenced by factors including sex, age, body composition, training and nutritional status
    corecore