10 research outputs found

    Sexual dimorphism in the neural impact of stress and alcohol

    Get PDF
    Alcohol use disorder is a widespread mental illness characterized by periods of abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, such as craving, is stronger in females. Given the greater susceptibility of females to stress-related psychiatric disorders, understanding sexual dimorphism in the relationship between stress and alcohol use is essential to identifying better treatments for both male and female alcoholics. This review addresses sex differences in the impact of stressors on alcohol drinking and seeking in rodents and humans. As these behavioral differences in alcohol use and relapse originate from sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, on molecular adaptations and neural activity in males and females will also be discussed. Together the data reviewed herein, arising from a symposium entitled “Sex matters in stress-alcohol interactions” presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the importance of identifying sex differences to improve treatments for comorbid stress and alcohol use disorder in both populations

    Behavioral profiling of multiple pairs of rats selectively bred for high and low alcohol intake using the MCSF test

    Get PDF
    Genetic aspects of alcoholism have been modeled using rats selectively bred for extremes of alcohol preference and voluntary alcohol intake. These lines show similar alcohol drinking phenotypes but have different genetic and environmental backgrounds and may therefore display diverse behavioral traits as seen in human alcoholics. The multivariate concentric square field™ (MCSF) test is designed to provoke exploration and behaviors associated with risk assessment, risk taking and shelter seeking in a novel environment. The aim was to use the MCSF to characterize behavioral profiles in rat lines from selective breeding programs in the United States (P/NP, HAD1/LAD1, HAD2/LAD2), Italy (sP/sNP) and Finland (AA/ANA). The open field and elevated plus maze tests were used as reference tests. There were substantial differences within some of the pairs of selectively bred rat lines as well as between all alcohol-preferring rats. The most pronounced differences within the pairs of lines were between AA and ANA rats and between sP and sNP rats followed by intermediate differences between P and NP rats and minor differences comparing HAD and LAD rats. Among all preferring lines, P, HAD1 and HAD2 rats shared similar behavioral profiles, while AA and sP rats were quite different from each other and the others. No single trait appeared to form a common 'pathway' associated with a high alcohol drinking phenotype among all of the alcohol-preferring lines of rats. The marked behavioral differences found in the different alcohol-preferring lines may mimic the heterogeneity observed among human alcoholic subtypes

    Sexual dimorphism in the neural impact of stress and alcohol

    No full text
    Alcohol use disorder is a widespread mental illness characterized by periods of abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, such as craving, is stronger in females. Given the greater susceptibility of females to stress-related psychiatric disorders, understanding sexual dimorphism in the relationship between stress and alcohol use is essential to identifying better treatments for both male and female alcoholics. This review addresses sex differences in the impact of stressors on alcohol drinking and seeking in rodents and humans. As these behavioral differences in alcohol use and relapse originate from sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, on molecular adaptations and neural activity in males and females will also be discussed. Together the data reviewed herein, arising from a symposium entitled “Sex matters in stress-alcohol interactions” presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the importance of identifying sex differences to improve treatments for comorbid stress and alcohol use disorder in both populations

    Estradiol modulation of the renin-angiotensin system and the regulation of fear extinction

    No full text
    Post-traumatic stress disorder (PTSD) is more prevalent in women than men, yet much remains to be determined regarding the mechanism underlying this sex difference. Clinical and preclinical studies have shown that low estradiol levels during extinction of fear conditioning in rodents (i.e., cue exposure therapy in humans) leads to poor extinction consolidation and increased fear during extinction recall. The renin-angiotensin system (RAS) is also associated with stress-related pathologies, and RAS antagonists can enhance extinction consolidation in males. However, less is known about how estradiol and the RAS converge to alter fear extinction consolidation in females. Since estradiol downregulates the RAS, we determined the role of surgically (via ovariectomy [OVX]) and pharmacologically (via the hormonal contraceptive [HC], levonorgestrel) clamping estradiol at low levels in female rats on fear-related behavior, serum estradiol and angiotensin II (Ang II) levels, and angiotensin II type I receptor (AT1R) binding in the brain. We then tested whether the AT1R antagonist losartan would alter fear-related behavior in an estradiol-dependent manner. We found that both OVX and HC treatment produced extinction consolidation deficits relative to intact female rats in proestrus (when estradiol levels are high), and that losartan treatment mitigated these deficits and reduced freezing. OVX, but not HC, altered AT1R ligand binding, though HC reduced estradiol and increased Ang II levels in plasma. These findings have significant clinical implications, indicating that administration of an AT1R antagonist, especially if estradiol levels are low, prior to an exposure therapy session may improve treatment outcomes in females

    Image_1_Sex- and age-dependent effects of chronic corticosterone exposure on depressive-like, anxiety-like, and fear-related behavior: Role of amygdala glutamate receptors in the rat.TIFF

    No full text
    Persistent glucocorticoid elevation consistent with chronic stress exposure can lead to psychopathology, including mood and anxiety disorders. Women and stress-exposed adolescents are more likely to be diagnosed with mood disorders, suggesting that sex and age are important factors in determining vulnerability, though much remains to be determined regarding the mechanisms underlying this risk. Thus, the aim of the present experiments was to use the chronic corticosterone (CORT) exposure paradigm, a model of depression-like behavior that has previously been established primarily in adult males, to determine the mood-related effects of CORT in female and adolescent rats. Depression- and anxiety-like effects in adulthood were determined using the sucrose preference (SPT), the forced swim test (FST), the elevated plus maze, and fear conditioning. Basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) glutamate receptor subunit levels were then measured. In a subsequent experiment, adult male and female rats were tested for the effects of pharmacological activation (via AMPA) or inhibition (via NBQX) of AMPA receptors in the BLA on behavior in the FST. Overall, females showed reduced anxiety- and depressive-like behaviors relative to males. However, females treated with CORT in adolescence, but not adulthood, had increased immobility in the FST, indicative of depression-like behavior. In contrast, CORT did not alter behavior in adolescent-treated males, though the previously reported depression-like effect of adult CORT exposure was observed. Control females had higher expression of the AMPA receptor subunits GluA1 and GluA2/3 selectively in the BLA relative to males. Adolescent CORT treatment, however, decreased BLA GluA1 and GluA2/3 expression in females, but increased expression in males, consistent with the direction of depression-like behavioral effects. Male and female rats also demonstrated opposing patterns of response to BLA AMPA receptor modulation in the FST, with AMPA infusion magnifying the sex difference of decreased immobility in females. Overall, these experiments show that increased glutamate receptor function in the BLA may decrease the risk of developing depressive-like behavior, further supporting efforts to target glutamatergic receptors for the treatment of stress-related psychiatric disorders. These findings also support further focus on sex as a biological variable in neuropsychiatric research.</p

    Phosphoproteomic Analysis of the Amygdala Response to Adolescent Glucocorticoid Exposure Reveals G-Protein Coupled Receptor Kinase 2 as a Target for Reducing Motivation for Alcohol

    No full text
    Early life stress is associated with risk for developing alcohol use disorders (AUDs) in adulthood. Though the neurobiological mechanisms underlying this vulnerability are not well understood, evidence suggests that aberrant glucocorticoid and noradrenergic system functioning play a role. The present study investigated the long-term consequences of chronic exposure to elevated glucocorticoids during adolescence on the risk of increased alcohol-motivated behavior, and on amygdalar function in adulthood. A discovery-based analysis of the amygdalar phosphoproteome using mass spectrometry was employed, to identify changes in function. Adolescent corticosterone (CORT) exposure increased alcohol, but not sucrose, self-administration, and enhanced stress-induced reinstatement with yohimbine in adulthood. Phosphoproteomic analysis indicated that the amygdala phosphoproteome was significantly altered by adolescent CORT exposure, generating a list of potential novel mechanisms involved in the risk of alcohol drinking. In particular, increased phosphorylation at serines 296&ndash;299 on the &alpha;2A adrenergic receptor (&alpha;2AAR), mediated by the G-protein coupled receptor kinase 2 (GRK2), was evident after adolescent CORT exposure. We found that intra-amygdala infusion of a peptidergic GRK2 inhibitor reduced alcohol seeking, as measured by progressive ratio and stress reinstatement tests, and induced by the &alpha;2AAR antagonist yohimbine. These results suggest that GRK2 represents a novel target for treating stress-induced motivation for alcohol which may counteract alterations in brain function induced by adolescent stress exposure

    Behavioral profiling of multiple pairs of rats selectively bred for high and low alcohol intake using the MCSF test

    No full text
    Genetic aspects of alcoholism have been modeled using rats selectively bred for extremes of alcohol preference and voluntary alcohol intake. These lines show similar alcohol drinking phenotypes but have different genetic and environmental backgrounds and may therefore display diverse behavioral traits as seen in human alcoholics. The multivariate concentric square field™ (MCSF) test is designed to provoke exploration and behaviors associated with risk assessment, risk taking and shelter seeking in a novel environment. The aim was to use the MCSF to characterize behavioral profiles in rat lines from selective breeding programs in the United States (P/NP, HAD1/LAD1, HAD2/LAD2), Italy (sP/sNP) and Finland (AA/ANA). The open field and elevated plus maze tests were used as reference tests. There were substantial differences within some of the pairs of selectively bred rat lines as well as between all alcohol-preferring rats. The most pronounced differences within the pairs of lines were between AA and ANA rats and between sP and sNP rats followed by intermediate differences between P and NP rats and minor differences comparing HAD and LAD rats. Among all preferring lines, P, HAD1 and HAD2 rats shared similar behavioral profiles, while AA and sP rats were quite different from each other and the others. No single trait appeared to form a common 'pathway' associated with a high alcohol drinking phenotype among all of the alcohol-preferring lines of rats. The marked behavioral differences found in the different alcohol-preferring lines may mimic the heterogeneity observed among human alcoholic subtypes
    corecore