25 research outputs found
The Formation of Fragments at Corotation in Isothermal Protoplanetary Disks
Numerical hydrodynamics simulations have established that disks which are
evolved under the condition of local isothermality will fragment into small
dense clumps due to gravitational instabilities when the Toomre stability
parameter is sufficiently low. Because fragmentation through disk
instability has been suggested as a gas giant planet formation mechanism, it is
important to understand the physics underlying this process as thoroughly as
possible. In this paper, we offer analytic arguments for why, at low ,
fragments are most likely to form first at the corotation radii of growing
spiral modes, and we support these arguments with results from 3D hydrodynamics
simulations.Comment: 21 pages, 1 figur
The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks II. Extended Simulations with Varied Cooling Rates
In order to investigate mass transport and planet formation by gravitational
instabilities (GIs), we have extended our 3-D hydrodynamic simulations of
protoplanetary disks from a previous paper. Our goal is to determine the
asymptotic behavior of GIs and how it is affected by different constant cooling
times. Initially, Rdisk = 40 AU, Mdisk = 0.07 Mo, M* = 0.5 Mo, and Qmin = 1.8.
Sustained cooling, with tcool = 2 orps (outer rotation periods, 1 orp ~ 250
yrs), drives the disk to instability in ~ 4 orps. This calculation is followed
for 23.5 orps. After 12 orps, the disk settles into a quasi-steady state with
sustained nonlinear instabilities, an average Q = 1.44 over the outer disk, a
well-defined power-law Sigma(r), and a roughly steady Mdot ~ 5(-7) Mo/yr. The
transport is driven by global low-order spiral modes. We restart the
calculation at 11.2 orps with tcool = 1 and 1/4 orp. The latter case is also
run at high azimuthal resolution. We find that shorter cooling times lead to
increased Mdots, denser and thinner spiral structures, and more violent dynamic
behavior. The asymptotic total internal energy and the azimuthally averaged
Q(r) are insensitive to tcool. Fragmentation occurs only in the high-resolution
tcool = 1/4 orp case; however, none of the fragments survive for even a quarter
of an orbit. Ring-like density enhancements appear and grow near the boundary
between GI active and inactive regions. We discuss the possible implications of
these rings for gas giant planet formation.Comment: Due to document size restrictions, the complete manuscript could not
be posted on astroph. Please go to http://westworld.astro.indiana.edu to
download the full document including figure
The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks III. Simulations with Radiative Cooling and Realistic Opacities
This paper presents a fully three-dimensional radiative hydrodymanics
simulation with realistic opacities for a gravitationally unstable 0.07 Msun
disk around a 0.5 Msun star. We address the following aspects of disk
evolution: the strength of gravitational instabilities under realistic cooling,
mass transport in the disk that arises from GIs, comparisons between the
gravitational and Reynolds stresses measured in the disk and those expected in
an alpha-disk, and comparisons between the SED derived for the disk and SEDs
derived from observationally determined parameters. The mass transport in this
disk is dominated by global modes, and the cooling times are too long to permit
fragmentation for all radii. Moreover, our results suggest a plausible
explanation for the FU Ori outburst phenomenon.Comment: 45 pages, 17 figures; submitted to Ap
The thermal regulation of gravitational instabilities in protoplanetary disks. IV. Simulations with envelope irradiation
It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamics simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 Msun around a young star of 0.5 Msun, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower-order modes, and irradiation preferentially suppresses higher-order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two and three-armed mode