193 research outputs found
Cytoplasmic CUG RNA Foci Are Insufficient to Elicit Key DM1 Features
The genetic basis of myotonic dystrophy type I (DM1) is the expansion of a CTG tract located in the 3′ untranslated region of DMPK. Expression of mutant RNAs encoding expanded CUG repeats plays a central role in the development of cardiac disease in DM1. Expanded CUG tracts form both nuclear and cytoplasmic aggregates, yet the relative significance of such aggregates in eliciting DM1 pathology is unclear. To test the pathophysiology of CUG repeat encoding RNAs, we developed and analyzed mice with cardiac-specific expression of a beta-galactosidase cassette in which a (CTG)400 repeat tract was positioned 3′ of the termination codon and 5′ of the bovine growth hormone polyadenylation signal. In these animals CUG aggregates form exclusively in the cytoplasm of cardiac cells. A key pathological consequence of expanded CUG repeat RNA expression in DM1 is aberrant RNA splicing. Abnormal splicing results from the functional inactivation of MBNL1, which is hypothesized to occur due to MBNL1 sequestration in CUG foci or from elevated levels of CUG-BP1. We therefore tested the ability of cytoplasmic CUG foci to elicit these changes. Aggregation of CUG RNAs within the cytoplasm results both in Mbnl1 sequestration and in approximately a two fold increase in both nuclear and cytoplasmic Cug-bp1 levels. Significantly, despite these changes RNA splice defects were not observed and functional analysis revealed only subtle cardiac dysfunction, characterized by conduction defects that primarily manifest under anesthesia. Using a human myoblast culture system we show that this transgene, when expressed at similar levels to a second transgene, which encodes expanded CTG tracts and facilitates both nuclear focus formation and aberrant splicing, does not elicit aberrant splicing. Thus the lack of toxicity of cytoplasmic CUG foci does not appear to be a consequence of low expression levels. Our results therefore demonstrate that the cellular location of CUG RNA aggregates is an important variable that influences toxicity and support the hypothesis that small molecules that increase the rate of transport of the mutant DMPK RNA from the nucleus into the cytoplasm may significantly improve DM1 pathology
Fussy Feeders: Phyllosoma Larvae of the Western Rocklobster (Panulirus cygnus) Demonstrate Prey Preference
The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of the planktotrophic larval stage (phyllosoma) of P. cygnus were previously unknown, hampering both management and aquaculture efforts for this species. Ship-board feeding trials of wild-caught mid-late stage P. cygnus phyllosoma in the eastern Indian Ocean, off the coast of Western Australia, were conducted in July 2010 and August-September 2011. In a series of experiments, phyllosoma were fed single and mixed species diets of relatively abundant potential prey items (chaetognaths, salps, and krill). Chaetognaths were consumed in 2–8 times higher numbers than the other prey, and the rate of consumption of chaetognaths increased with increasing concentration of prey. The highly variable lipid content of the phyllosoma, and the fatty acid profiles of the phyllosoma and chaetognaths, indicated they were from an oligotrophic oceanic food chain where food resources for macrozooplankton were likely to be constrained. Phyllosoma fed chaetognaths over 6 days showed significant changes in some fatty acids and tended to accumulate lipid, indicating an improvement in overall nutritional condition. The discovery of a preferred prey for P. cygnus will provide a basis for future oceanographic, management and aquaculture research for this economically and ecologically valuable species
The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm
Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms
Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference
Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD cases and 902,757 controls to previously reported data. This analysis used a range of measures to define MD and included samples of African (36% of effective sample size), East Asian (26%) and South Asian (6%) ancestry and Hispanic/Latin American participants (32%). The multi-ancestry GWAS identified 53 significantly associated novel loci. For loci from GWAS in European ancestry samples, fewer than expected were transferable to other ancestry groups. Fine mapping benefited from additional sample diversity. A transcriptome-wide association study identified 205 significantly associated novel genes. These findings suggest that, for MD, increasing ancestral and global diversity in genetic studies may be particularly important to ensure discovery of core genes and inform about transferability of findings.</p
Crop Updates 2005 - Farming Systems
This session covers forty four papers from different authors:
PLENARY
1. 2005 Outlook, David Stephens and Nicola Telcik, Department of Agriculture
FERTILITY AND NUTRITION
2. The effect of higher nitrogen fertiliser prices on rotation and fertiliser strategies in cropping systems, Ross Kingwell, Department of Agriculture and University of Western Australia
3. Stubble management: The short and long term implications for crop nutrition and soil fertility, Wayne Pluske, Nutrient Management Systems and Bill Bowden, Department of Agriculture
4. Stubble management: The pros and cons of different methods, Bill Bowden, Department of Agriculture, Western Australia and Mike Collins, WANTFA
5. Effect of stubble burning and seasonality on microbial processes and nutrient recycling, Frances Hoyle, The University of Western Australia
6. Soil biology and crop production in Western Australian farming systems, D.V. Murphy, N. Milton, M. Osman, F.C. Hoyle, L.K Abbott, W.R. Cookson and S. Darmawanto, The University of Western Australia
7. Urea is as effective as CAN when no rain for 10 days, Bill Crabtree, Crabtree Agricultural Consulting
8. Fertiliser (N,P,S,K) and lime requirements for wheat production in the Merredin district, Geoff Anderson, Department of Agriculture and Darren Kidson, Summit Fertilizers
9. Trace element applications: Up-front verses foliar? Bill Bowden and Ross Brennan, Department of Agriculture
10. Fertcare®, Environmental Product Stewardship and Advisor Standards for thee Fertiliser Industry, Nick Drew, Fertilizer Industry Federation of Australia (FIFA)
SOIL AND LAND MANAGEMENT
11. Species response to row spacing, density and nutrition, Bill Bowden, Craig Scanlan, Lisa Sherriff, Bob French and Reg Lunt, Department of Agriculture
12. Investigation into the influence of row orientation in lupin crops, Jeff Russell, Department of Agriculture and Angie Roe, Farm Focus Consultants
13. Deriving variable rate management zones for crops, Ian Maling, Silverfox Solutions and Matthew Adams, DLI
14. In a world of Precision Agriculture, weigh trailers are not passé, Jeff Russell, Department of Agriculture
15. Cover crop management to combat ryegrass resistance and improve yields, Jeff Russell, Department of Agriculture and Angie Roe, Farm Focus Consultants
16. ARGT home page, the place to find information on annual ryegrass toxicity on the web, Dr George Yan, BART Pty Ltd
17. Shallow leading tine (SLT) ripper significantly reduces draft force, improves soil tilth and allows even distribution of subsoil ameliorants, Mohammad Hamza, Glen Riethmuller and Wal Anderson, Department of Agriculture
PASTURE ANS SUMMER CROP SYSTEMS
18. New annual pasture legumes for Mediteranean farming systems, Angelo Loi, Phil Nichols, Clinton Revell and David Ferris, Department of Agriculture
19. How sustainable are phase rotations with Lucerne? Phil Ward, CSIRO Plant Industry
20. Management practicalities of summer cropping, Andrea Hills and Sally-Anne Penny, Department of Agriculture
21. Rainfall zone determines the effect of summer crops on winter yields, Andrea Hills, Sally-Anne Penny and David Hall, Department of Agriculture
22. Summer crops and water use, Andrea Hills, Sally-Anne Penny and David Hall, Department of Agriculture, and Michael Robertson and Don Gaydon, CSIRO Brisbane
23. Risk analysis of sorgum cropping, Andrea Hills and Sally-Anne Penny, Department of Agriculture, and Dr Michael Robertson and Don Gaydon, CSIRO Brisbane
FARMER DECISION SUPPORT AND ADOPTION
24. Variety release and End Point Royalties – a new system? Tress Walmsley, Department of Agriculture
25. Farming system analaysis using the STEP Tool, Caroline Peek and Megan Abrahams, Department of Agriculture
26. The Leakage Calculator: A simple tool for groundwater recharge assessment, Paul Raper, Department of Agriculture
27. The cost of Salinity Calculator – your tool to assessing the profitability of salinity management options, Richard O’Donnell and Trevor Lacey, Department of Agriculture
28. Climate decision support tools, Meredith Fairbanks and David Tennant, Department of Agriculture
29. Horses for courses – using the best tools to manage climate risk, Cameron Weeks, Mingenew-Irwin Group/Planfarm and Richard Quinlan, Planfarm Agronomy
30. Use of seasonal outlook for making N decisions in Merredin, Meredith Fairbanks and Alexandra Edward, Department of Agriculture
31. Forecasts and profits, Benefits or bulldust? Chris Carter and Doug Hamilton, Department of Agriculture
32. A tool to estimate fixed and variable header and tractor depreciation costs, Peter Tozer, Department of Agriculture
33. Partners in grain: ‘Putting new faces in new places’, Renaye Horne, Department of Agriculture
34. Results from the Grower group Alliance, Tracey Gianatti, Grower Group Alliance
35. Local Farmer Group Network – farming systems research opportunities through local groups, Paul Carmody, Local Farmer Group Network
GREENHOUSE GAS AND CLIMATE CHANGE
36. Changing rainfall patterns in the grainbelt, Ian Foster, Department of Agriculture
37. Vulnerability of broadscale agriculture to the impacts of climate change, Michele John, CSIRO (formerly Department of Agriculture) and Ross George, Department of Agriculture
38. Impacts of climate change on wheat yield at Merredin, Imma Farré and Ian Foster, Department of Agriculture
39. Climate change, land use suitability and water security, Ian Kininmonth, Dennis van Gool and Neil Coles, Department of Agriculture
40. Nitrous oxide emissions from cropping systems, Bill Porter, Department of Agriculture, Louise Barton, University of Western Australia
41. The potential of greenhouse sinks to underwrite improved land management in Western Australia, Richard Harper and Peter Ritson, CRC for Greenhouse Accounting and Forest Products Commission, Tony Beck, Tony Beck Consulting Services, Chris Mitchell and Michael Hill, CRC for Greenhouse Accounting
42. Removing uncertainty from greenhouse emissions, Fiona Barker-Reid, Will Gates, Ken Wilson and Rob Baigent, Department of Primary Industries - Victoria and CRC for Greenhouse Accounting (CRCGA), and Ian Galbally, Mick Meyer and Ian Weeks, CSIRO Atmospheric Research and CRCGA
43. Greenhouse in Agriculture Program (GIA), Traci Griffin, CRC for Greenhouse Accounting
44. Grains Greenhouse Accounting framework, D. Rodriguez, M. Probust, M. Meyers, D. Chen, A. Bennett, W. Strong, R. Nussey, I. Galbally and M. Howden
CONTACT DETAILS FOR PRINCIPAL AUTHOR
Using Evolutionary Conserved Modules in Gene Networks as a Strategy to Leverage High Throughput Gene Expression Queries
Background: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seednetwork of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. Methodology/Principal Findings: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. Conclusions/Significance: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will facilitate the use of prior biological knowledge to develop rational systems-based hypotheses
Global phylogeography and ancient evolution of the widespread human gut virus crAssphage
Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome
An inclusive Research and Education Community (iREC) model to facilitate undergraduate science education reform
Funding: This work was supported by Howard Hughes Medical Institute grants to DIH is GT12052 and MJG is GT15338.Over the last two decades, there have been numerous initiatives to improve undergraduate student outcomes in STEM. One model for scalable reform is the inclusive Research Education Community (iREC). In an iREC, STEM faculty from colleges and universities across the nation are supported to adopt and sustainably implement course-based research – a form of science pedagogy that enhances student learning and persistence in science. In this study, we used pathway modeling to develop a qualitative description that explicates the HHMI Science Education Alliance (SEA) iREC as a model for facilitating the successful adoption and continued advancement of new curricular content and pedagogy. In particular, outcomes that faculty realize through their participation in the SEA iREC were identified, organized by time, and functionally linked. The resulting pathway model was then revised and refined based on several rounds of feedback from over 100 faculty members in the SEA iREC who participated in the study. Our results show that in an iREC, STEM faculty organized as a long-standing community of practice leverage one another, outside expertise, and data to adopt, implement, and iteratively advance their pedagogy. The opportunity to collaborate in this manner and, additionally, to be recognized for pedagogical contributions sustainably engages STEM faculty in the advancement of their pedagogy. Here, we present a detailed pathway model of SEA that, together with underpinning features of an iREC identified in this study, offers a framework to facilitate transformations in undergraduate science education.Peer reviewe
- …