113 research outputs found

    Joint Modeling of Radial Velocities and Photometry with a Gaussian Process Framework

    Full text link
    Developments in the stability of modern spectrographs have led to extremely precise instrumental radial velocity (RV) measurements. For most stars, the detection limit of planetary companions with these instruments is expected to be dominated by astrophysical noise sources such as starspots. Correlated signals caused by rotationally-modulated starspots can obscure or mimic the Doppler shifts induced by even the closest, most massive planets. This is especially true for young, magnetically active stars where stellar activity can cause fluctuation amplitudes of ≳\gtrsim0.1 mag in brightness and ≳\gtrsim100 m s−1^{-1} in RV semi-amplitudes. Techniques that can mitigate these effects and increase our sensitivity to young planets are critical to improving our understanding of the evolution of planetary systems. Gaussian processes (GPs) have been successfully employed to model and constrain activity signals in individual cases. However, a principled approach of this technique, specifically for the joint modeling of photometry and RVs, has not yet been developed. In this work, we present a GP framework to simultaneously model stellar activity signals in photometry and RVs that can be used to investigate the relationship between both time series. Our method, inspired by the FF′\textit{FF}^\prime framework of (Aigrain et al. 2012), models spot-driven activity signals as the linear combinations of two independent latent GPs and their time derivatives. We also simulate time series affected by starspots by extending the starry\texttt{starry} software (Luger et al. 2019) to incorporate time evolution of stellar features. Using these synthetic datasets, we show that our method can predict spot-driven RV variations with greater accuracy than other GP approaches.Comment: 19 pages, 10 figure

    Stellar Systems at Low Radio Frequencies:The Discovery of Radio Exoplanets

    Get PDF
    For more than thirty years, radio astronomers have searched for auroral emission from exoplanets. With LOFAR we have recently detected strong, highly circularly polarised low-frequency (144 MHz) radio emission associated with a M-dwarf — the expected signpost of such radiation. The star itself is quiescent, with a 130-day rotation period and low X-ray luminosity. In this talk, I will detail how the radio properties of the detection imply that such emission is generated by the presence of an exoplanet in a short period orbit around the star, and our follow-up radial-velocity (RV) observations with Harps-N to confirm the exoplanet's presence. Our study highlights the powerful new and developing synergy between low-frequency radio astronomy and RV observations, with radio emission providing a strong prior on the presence of a short-period planet. I will conclude the talk detailing how the radio detection of an star-exoplanet interaction provides unique information for exoplanet climate and habitability studies, and the extension of our survey to other stellar systems
    • …
    corecore