1,582 research outputs found

    Highly Efficient Hydrosilylation of Alkenes by Organoyttrium Catalysts with Sterically Demanding Amidinate and Guanidinate Ligands

    Get PDF
    The sterically demanding guanidine ArNHC(NMe2)NAr (Ar = 2,6-diisopropylphenyl, HL) reacts with Y(CH2SiMe3)3(THF)2 to give the yttrium dialkyl complex (L)Y(CH2SiMe3)2(THF) (1), which was structurally characterized. Electronic interaction of the -NMe2 group with the conjugated ligand backbone can be inferred from structural and spectroscopic data. The new yttrium guanidinate complex 1 and its related amidinate analogue [PhC(NAr)2]Y(CH2SiMe3)2(THF) are highly active and selective catalysts for alkene hydrosilylation with PhSiH3 (tof > 600 h-1 at 23 °C). For unfunctionalized olefins, full selectivity toward anti-Markovnikov products was obtained. The more electron donating guanidinate ligand affords the highest activities with heteroatom-functionalized substrates.

    Cationic Group 3 Alkyl Complexes with Isopropyl-Substituted Triazacyclononane-amide Ligands: Synthesis, Structure, and Thermal Decomposition Processes

    Get PDF
    Yttrium and lanthanum dialkyl complexes with the isopropyl-substituted triazacyclononane-amide monoanionic ligands [iPr2TACN-(B)-NtBu] (B = (CH2)2, L1; SiMe2, L2) are described. For Y, these were obtained by reaction of Y(CH2SiMe3)2(THF)2 with HL, whereas for La in situ peralkylation of LaBr3(THF)4 preceded reaction with HL. In C6D5Br solvent, reaction of LMR2 with [PhNMe2H][B(C6F5)4] results in rapid decomposition involving loss of propene from the ligand. This decomposition is prevented (Y) or retarded (La) in THF solvent. For yttrium, salts of the cations [LYR(THF)]+ were isolated and structurally characterized. ES-MS of these cations revealed facile desolvation. At increased nozzle voltages, fragmentation is observed with initial loss of SiMe4, followed by loss of propene. Thus decomposition is likely to involve initial cyclometalation of a ligand iPr group, followed by propene extrusion. Decomposition of [L2LaR(THF)x]+ in THF solution yields the dinuclear dication {[tBuN(Me2Si)N(C2H4)2N(C2H4)NiPr]2La2(THF)2}2+, which was structurally characterized. Kinetic data of the decomposition suggest that the process involves initial THF dissociation.

    Inversion symmetry in the spin-Peierls compound NaV2O5

    Get PDF
    At room-temperature NaV2O5 was found to have the centrosymmetric space group Pmmn. This space group implies the presence of only one kind of V site in contrast with previous reports of the non-centrosymmetric counterpart P21mn. This indicates a non-integer valence state of vanadium. Furthermore, this symmetry has consequences for the interpretation of the transition at 34 K, which was ascribed to a spin-Peierls transition of one dimensional chains of V4+.Comment: Revtex, 3 pages, 2 postscript pictures embedded in the text. Corrected a mistake in one pictur

    Evidence for differentiation in the iron-helicoidal-chain in GdFe3_{3}(BO3_{3})4_{4}

    Get PDF
    We report on a single-crystal X-ray structure study of GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} at room temperature and at T=90 K. At room temperature GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} crystallizes in a trigonal space group R32 (No. 155), the same as found for other members of iron-borate family RFe3(BO3)4RFe_{3}(BO_{3})_{4}. At 90 K the structure of GdFe3(BO3)4GdFe_{3}(BO_{3})_{4} has transformed to the space group P3121P3_{1}2_{1} (No. 152). The low-temperature structure determination gives new insight into the weakly first-order structural phase transition at 156 K and into the related Raman phonon anomalies. The discovery of two inequivalent iron chains in the low temperature structure provide new point of view on the low-temperature magnetic properties.Comment: Subm. to Acta Cryst.

    Hexagonal LuMnO3 revisited

    Get PDF
    The crystal structure of hexagonal LuMnO3 at room temperature is isomorphous with YMnO3 and deviates in important details from early work. Mn is near the centre of its oxygen coordination environment. On the threefold axes, the apical O-Lu bonds have alternating long and short bond lengths, leading to ferroelectric behaviour. The sample studied was composed of almost equal volumes of inversion twins
    corecore