5 research outputs found
NeMedPlant: a database of therapeutic applications and chemical constituents of medicinal plants from north-east region of India
The North-East region of India is one of the twelve mega biodiversity region, containing many rare and endangered species. A
curated database of medicinal and aromatic plants from the regions called NeMedPlant is developed. The database contains
traditional, scientific and medicinal information about plants and their active constituents, obtained from scholarly literature and
local sources. The database is cross-linked with major biochemical databases and analytical tools. The integrated database provides
resource for investigations into hitherto unexplored medicinal plants and serves to speed up the discovery of natural productsbased
drugs
Ligand-Based Pharmacophore Modeling and Virtual Screening of RAD9 Inhibitors
Human RAD9 is a key cell-cycle checkpoint protein that participates in DNA repair, activation of multiple cell cycle phase checkpoints, and apoptosis. Aberrant RAD9 expression has been linked to breast, lung, thyroid, skin, and prostate tumorigenesis. Overexpression of RAD9 interacts with BCL-2 proteins and blocks the binding sites of BCL-2 family proteins to interact with chemotherapeutic drugs and leads to drug resistance. Focusing on this interaction, the present study was designed to identify the interaction sites of RAD9 to bind BCL-2 protein and also to inhibit RAD9-BCL-2 interactions by designing novel small molecule inhibitors using pharmacophore modeling and to restore BCL-2 for interacting with anticancer drugs. The bioactive molecules of natural origin act as excellent leads for new drug development. Thus, in the present study, we used the compounds of natural origin like camptothecin, ascididemin, and Dolastatin and also compared them with synthetic molecule NSC15520. The results revealed that camptothecin can act as an effective inhibitor among all the ligands taken and can be used as an RAD9 inhibitor. The amino acids ARG45 and ALA134 of RAD9 protein are interacting commonly with the drugs and BCL-2 protein
Hyperoxidation of Peroxiredoxin 6 Induces Alteration from Dimeric to Oligomeric State
Peroxiredoxins(Prdx), the family of non-selenium glutathione peroxidases, are important antioxidant enzymes that defend our system from the toxic reactive oxygen species (ROS). They are thiol-based peroxidases that utilize self-oxidation of their peroxidatic cysteine (Cp) group to reduce peroxides and peroxidized biomolecules. However, because of its high affinity for hydrogen peroxide this peroxidatic cysteine moiety is extremely susceptible to hyperoxidation, forming peroxidase inactive sulfinic acid (Cys-SO2H) and sulfonic acid (Cys-SO3H) derivatives. With the exception of peroxiredoxin 6 (Prdx6), hyperoxidized sulfinic forms of Prdx can be reversed to restore peroxidase activity by the ATP-dependent enzyme sulfiredoxin. Interestingly, hyperoxidized Prdx6 protein seems to have physiological significance as hyperoxidation has been reported to dramatically upregulate its calcium independent phospholipase A2 activity. Using biochemical studies and molecular dynamic (MD) simulation, we investigated the roles of thermodynamic, structural and internal flexibility of Prdx6 to comprehend the structural alteration of the protein in the oxidized state. We observed the loosening of the hydrophobic core of the enzyme in its secondary and tertiary structures. These changes do not affect the internal dynamics of the protein (as indicated by root-mean-square deviation, RMSD and root mean square fluctuation, RMSF plots). Native-PAGE and dynamic light scattering experiments revealed the formation of higher oligomers of Prdx6 under hyperoxidation. Our study demonstrates that post translational modification (like hyperoxidation) in Prdx6 can result in major alterations of its multimeric status