199 research outputs found
Joint-rollout of FTTH and smart city fiber networks as a way to reduce rollout cost
Making cities smarter is the future. By bringing more technology into existing city infrastructure, smart city applications can arise. Whether these applications track devices e.g. public lightning, environmental measurements e.g. temperature or air quality, or analyze video streams e.g. for people density, it is expected that these will require a (near-) real time data connection. Upcoming 5G networks will be able to handle large amounts of connections at high speeds and low latencies and will therefor outperform current technologies such as 4G and low-power wide-area networks. In order to do so, these 5G networks fall back to numerous fiber connected small cells for up & downlink to the Internet. In this publication, we are looking into the additional fiber equipment and deployment cost to connect the required smart city network infrastructure, taking into account a Fiber-to-the-Home (FTTH) network is already available or will be installed as part of the smart city network rollout. More concretely, we are proposing a methodology comparing an anticipated and incremental planning approach for a number of different extensions upon the FTTH-network: connecting all electrical cabinets, connecting public lightning, and the connection of 5G using small cells. From this, we want to learn how much the total rollout cost can be reduced using a future-oriented smart city approach taking into account all future extensions, compared to an incremental short-time planning only planning additional fiber when required. In the meantime, we want to show the additional cost of creating a smart city network is limited when it is being combined with a FTTH rollout. Results of the proposed methodology and use case will be modeled planning and design software Comsof Fiber and will be published in a future work
Economic impact of port activity : a disaggregate analysis. The case of Antwerp
The economic impact of the port sector is usually measured at an aggregate level by indicators such as value added, employment and investment. This paper tries to define the economic relevance for the regional as well as for the national economy at a disaggregate level. It attempts to identify, quantify and locate the mutual relationships between the various port players themselves and between them and other Belgian industries. Due to a lack of information foreign trade is only tackled very briefly but the method outlined in this paper can be used to measure the national effects of changes in port activity at a detailed level. A sector analysis is made by compiling a regional (regional as geographically opposed to national, not to be mistaken for the Belgian Regions Brussels, Flanders and Wallonia) input-output table, resorting to microeconomic data: a bottom-up approach. The main customers and suppliers of the port's key players or stakeholders are identified. A geographical analysis can also be carried out by using data at a disaggregate level. Each customer or supplier can be located by means of their postcode. In so doing, the economic impact of the port is quantified, both functionally and geographically. In the case of the port of Antwerp, the results show important links between freight forwarders and agents. The geographical analysis suggests the existence of major agglomerating effects in and around the port of Antwerp, referred to as a major transhipment location point. Key words: port economics, regional input-output table, sector analysis, geographical analysis.port economics, regional input-output table, sector analysis, geographical analysis
On the Degree of Team Cooperation in CD Grammar Systems.
In this paper, we introduce a dynamical complexity measure, namely the degree of team cooperation, in the aim of investigating "how much" the components of a grammar system cooperate when forming a team in the process of generating terminal words. We present several results which strongly suggest that this measure is trivial in the sense that the degree of team cooperation of any language is bounded by a constant. Finally, we prove that the degree of team cooperation of a given cooperating/distributed grammar system cannot be algorithmically computed and discuss a decision problem
A genetic analysis of ambulatory cardiorespiratory coupling.
This study assessed the heritability of ambulatory heart period, respiratory sinus arrhythmia (RSA), and respiration rate and tested the hypothesis that the well-established correlation between these variables is determined by common genetic factors. In 780 healthy twins and siblings, 24-h ambulatory recordings of ECG and thorax impedance were made. Genetic analyses showed considerable heritability for heart period (37%-48%), RSA (40%-55%), and respiration rate (27%-81%) at all daily periods. Significant genetic correlations were found throughout. Common genes explained large portions of the covariance between heart period and RSA and between respiration rate and RSA. During the afternoon and night, the covariance between respiration rate and RSA was completely determined by common genes. This overlap in genes can be exploited to increase the power of linkage studies to detect genetic variation influencing cardiovascular disease risk. Copyright © 2005 Society for Psychophysiological Research
Membrane protein dynamics: limited lipid control
Correlation of lipid disorder with membrane protein dynamics has been studied with infrared spectroscopy, by combining data characterizing lipid phase, protein structure and, via hydrogen-deuterium (H/D) exchange, protein dynamics. The key element was a new measuring scheme, by which the combined effects of time and temperature on the H/D exchange could be separated. Cyanobacterial and plant thylakoid membranes, mammalian mitochondria membranes, and for comparison, lysozyme were investigated. In dissolved lysozyme, as a function of temperature, H/D exchange involved only reversible movements (the secondary structure did not change considerably); heat-denaturing was a separate event at much higher temperature. Around the low-temperature functioning limit of the biomembranes, lipids affected protein dynamics since changes in fatty acyl chain disorders and H/D exchange exhibited certain correlation. H/D exchange remained low in all membranes over physiological temperatures. Around the high-temperature functioning limit of the membranes, the exchange rates became higher. When temperature was further increased, H/D exchange rates went over a maximum and afterwards decreased (due to full H/D exchange and/or protein denaturing). Maximal H/D exchange rate temperatures correlated neither with the disorder nor with the unsaturation of lipids. In membrane proteins, in contrast to lysozyme, the onsets of sizable H/D exchange rates were the onsets of irreversible denaturing as well. Seemingly, at temperatures where protein self-dynamics allows large-scale H/D exchange, lipid-protein coupling is so weak that proteins prefer aggregating to limit the exposure of their hydrophobic surface regions to water. In all membranes studied, dynamics seemed to be governed by lipids around the low-temperature limit, and by proteins around the high-temperature limit of membrane functionality
Cardiorespiratory Phase-Coupling Is Reduced in Patients with Obstructive Sleep Apnea
Cardiac and respiratory rhythms reveal transient phases of phase-locking which were proposed to be an important aspect of cardiorespiratory interaction. The aim of this study was to quantify cardio-respiratory phase-locking in obstructive sleep apnea (OSA). We investigated overnight polysomnography data of 248 subjects with suspected OSA. Cardiorespiratory phase-coupling was computed from the R-R intervals of body surface ECG and respiratory rate, calculated from abdominal and thoracic sensors, using Hilbert transform. A significant reduction in phase-coupling was observed in patients with severe OSA compared to patients with no or mild OSA. Cardiorespiratory phase-coupling was also associated with sleep stages and was significantly reduced during rapid-eye-movement (REM) sleep compared to slow-wave (SW) sleep. There was, however, no effect of age and BMI on phase coupling. Our study suggests that the assessment of cardiorespiratory phase coupling may be used as an ECG based screening tool for determining the severity of OSA
Physiological and autonomic stress responses after prolonged sleep restriction and subsequent recovery sleep in healthy young men
Purpose Sleep restriction is increasingly common and associated with the development of health problems. We investigated how the neuroendocrine stress systems respond to prolonged sleep restriction and subsequent recovery sleep in healthy young men. Methods After two baseline (BL) nights of 8 h time in bed (TIB), TIB was restricted to 4 h per night for five nights (sleep restriction, SR, n = 15), followed by three recovery nights (REC) of 8 h TIB, representing a busy workweek and a recovery weekend. The control group (n = 8) had 8 h TIB throughout the experiment. A variety of autonomic cardiovascular parameters, together with salivary neuropeptide Y (NPY) and cortisol levels, were assessed. Results In the control group, none of the parameters changed. In the experimental group, heart rate increased from 60 +/- 1.8 beats per minute (bpm) at BL, to 63 +/- 1.1 bpm after SR and further to 65 +/- 1.8 bpm after REC. In addition, whole day low-frequency to-high frequency (LF/HF) power ratio of heart rate variability increased from 4.6 +/- 0.4 at BL to 6.0 +/- 0.6 after SR. Other parameters, including salivary NPY and cortisol levels, remained unaffected. Conclusions Increased heart rate and LF/HF power ratio are early signs of an increased sympathetic activity after prolonged sleep restriction. To reliably interpret the clinical significance of these early signs of physiological stress, a follow-up study would be needed to evaluate if the stress responses escalate and lead to more unfavourable reactions, such as elevated blood pressure and a subsequent elevated risk for cardiovascular health problems.Peer reviewe
Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study
Background
Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS).
Methods
Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up.
Results
The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients at follow-up, compared to 0 % of controls at baseline or follow-up.
Conclusions
Results from our feasibility assessment suggest that the investigation of ANS function in young adult cancer patients undergoing chemotherapy is possible. To the best of our knowledge, this is the first study to report CASS-based evidence of ANS impairment and sudomotor dysfunction in any cancer population. Moreover, we provide evidence of cancer- and chemotherapy-related parasympathetic dysfunction – as a possible contributor to the pathogenesis of CV disease in cancer survivors
- …