300 research outputs found

    Basal metabolic rate in relation to body composition and daily energy expenditure in the field vole, Microtus agrestis

    Get PDF
    Basal metabolic rate in the field vole (Microtus agrestis) was studied in relation to body composition and daily energy expenditure in the field Daily energy expenditure was measured by means of doubly labelled water ((D2O)-O-18). In the same individuals, basal metabolic rate was subsequently derived from O-2 consumption in an open-circuit system in the laboratory. Body composition was obtained by dissecting the animals and determining fresh, dry, and lean dry mass of different organs. Daily energy expenditure for free-living field voles ranged from 1.8 to 4.5 times basal metabolic race, with an average of 2.9 times basal metabolic rate. Variation in both daily energy expenditure and basal metabolic rate was best explained by body mass. Gender or reproductive activity did not have significant additive effects. Daily energy expenditure and basal metabolic rate showed significant positive relationships to body mass with similar mass exponents of 0.493 and 0.526, respectively. Overall, there was a significant correlation between daily energy expenditure and basal metabolic rate, but the mass-independent residuals (deviations from the allometrically predicted values) did not correlate. Carcass analysis revealed that a number of organs were slightly better predictors for daily energy expenditure and basal metabolic rate than was fresh body mass. Mass-independent residuals of lean dry heart mass and basal metabolic rate were positively correlated, which is in agreement with the idea that basal metabolic rate reflects the size of metabolically active organs. The study does not provide support for an intraindividual association of basal metabolic rate with daily energy expenditure in the field

    Social stress and glucocorticoids alter PERIOD2 rhythmicity in the liver, but not in the suprachiasmatic nucleus

    Get PDF
    Circadian (~24 h) rhythms in behavior and physiological functions are under control of an endogenous circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN directly drives some of these rhythms or serves as a coordinator of peripheral oscillators residing in other tissues and organs. Disruption of the circadian organization may contribute to disease, including stress-related disorders. Previous research indicates that the master clock in the SCN is resistant to stress, although it is unclear whether stress affects rhythmicity in other tissues, possibly mediated by glucocorticoids, released in stressful situations. In the present study, we examined the effect of uncontrollable social defeat stress and glucocorticoid hormones on the central and peripheral clocks, respectively in the SCN and liver. Transgenic PERIOD2::LUCIFERASE knock-in mice were used to assess the rhythm of the clock protein PERIOD2 (PER2) in SCN slices and liver tissue collected after 10 consecutive days of social defeat stress. The rhythmicity of PER2 expression in the SCN was not affected by stress exposure, whereas in the liver the expression showed a delayed phase in defeated compared to non-defeated control mice. In a second experiment, brain slices and liver samples were collected from transgenic mice and exposed to different doses of corticosterone. Corticosterone did not affect PER2 rhythm of the SCN samples, but caused a phase shift in PER2 expression in liver samples. This study confirms earlier findings that the SCN is resistant to stress and shows that clocks in the liver are affected by social stress, which might be due to the direct influence of glucocorticoids released from the adrenal gland

    Metabolic consequences of chronic sleep restriction in rats:Changes in body weight regulation and energy expenditure

    Get PDF
    Epidemiological studies have shown an association between short or disrupted sleep and an increased risk to develop obesity. In animal studies, however, sleep restriction leads to an attenuation of weight gain that cannot be explained by changes in energy intake. In the present study, we assessed whether the attenuated weight gain under conditions of restricted sleep is a consequence of an overall increase in energy expenditure. Adult male rats were subjected to a schedule of chronic sleep restriction (SR) for 8 days with a 4 h window of unrestricted rest per day. Electroencephalogram and electromyogram recordings were performed to quantify the effect of the sleep restriction schedule on sleep-wake patterns. In a separate experiment, we measured sleep restriction-induced changes in body weight, food intake, and regulatory hormones such as glucose, insulin, leptin and corticosterone. To investigate whether a change in energy expenditure underlies the attenuation of weight gain, energy expenditure was measured by the doubly labeled water method from day 5 until day 8 of the SR protocol. Results show a clear attenuation of weight gain during sleep restriction but no change in food intake. Baseline plasma glucose, insulin and leptin levels are decreased after sleep restriction which presumably reflects the nutritional status of the rats. The daily energy expenditure during SR was significantly increased compared to control rats. Together, we conclude that the attenuation of body weight gain in sleep restricted rats is explained by an overall increase in energy expenditure together with an unaltered energy intake. Published by Elsevier Inc

    Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    Get PDF
    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density

    Mathematical modeling of sleep state dynamics in a rodent model of shift work

    Get PDF
    Millions of people worldwide are required to work when their physiology is tuned for sleep. By forcing wakefulness out of the body’s normal schedule, shift workers face numerous adverse health consequences, including gastrointestinal problems, sleep problems, and higher rates of some diseases, including cancers. Recent studies have developed protocols to simulate shift work in rodents with the intention of assessing the effects of night-shift work on subsequent sleep (Grønli et al., 2017). These studies have already provided important contributions to the understanding of the metabolic consequences of shift work (Arble et al., 2015; Marti et al., 2016; Opperhuizen et al., 2015) and sleep-wake-specific impacts of night-shift work (Grønli et al., 2017). However, our understanding of the causal mechanisms underlying night-shift-related sleep disturbances is limited. In order to advance toward a mechanistic understanding of sleep disruption in shift work, we model these data with two different approaches. First we apply a simple homeostatic model to quantify differences in the rates at which sleep need, as measured by slow wave activity during slow wave sleep (SWS) rises and falls. Second, we develop a simple and novel mathematical model of rodent sleep and use it to investigate the timing of sleep in a simulated shift work protocol (Grønli et al., 2017). This mathematical framework includes the circadian and homeostatic processes of the two-process model, but additionally incorporates a stochastic process to model the polyphasic nature of rodent sleep. By changing only the time at which the rodents are forced to be awake, the model reproduces some key experimental results from the previous study, including correct proportions of time spent in each stage of sleep as a function of circadian time and the differences in total wake time and SWS bout durations in the rodents representing night-shift workers and those representing day-shift workers. Importantly, the model allows for deeper insight into circadian and homeostatic influences on sleep timing, as it demonstrates that the differences in SWS bout duration between rodents in the two shifts is largely a circadian effect. Our study shows the importance of mathematical modeling in uncovering mechanisms behind shift work sleep disturbances and it begins to lay a foundation for future mathematical modeling of sleep in rodents

    Can sleep and resting behaviours be used as indicators of welfare in shelter dogs (Canis lupusfamiliaris)?

    Get PDF
    Previous research on humans and animals suggests that the analysis of sleep patterns may reliably inform us about welfare status, but little research of this kind has been carried out for non-human animals in an applied context. This study explored the use of sleep and resting behaviour as indicators of welfare by describing the activity patterns of dogs (Canis lupus familiaris) housed in rescue shelters, and comparing their sleep patterns to other behavioural and cognitive measures of welfare. Sleep and activity patterns were observed over five non-consecutive days in a population of 15 dogs. Subsequently, the characteristics of sleep and resting behaviour were described and the impact of activity on patterns of sleep and resting behaviour analysed. Shelter dogs slept for 2.8% of the day, 14.3% less than previously reported and experienced less sleep fragmentation at night (32 sleep bouts). There were no statistically significant relationships between behaviours exhibited during the day and sleep behaviour. A higher proportion of daytime resting behaviour was significantly associated with a positive judgement bias, less repetitive behaviour and increased time spent coded as ‘relaxed’ across days by shelter staff. These results suggest that, in the context of a busy shelter environment, the ability to rest more during the day could be a sign of improved welfare. Considering the non-linear relationship between sleep and welfare in humans, the relationship between sleep and behavioural indicators of welfare, including judgement bias, in shelter dogs may be more complex than this study could detect

    No Elevated Plasma Catecholamine Levels during Sleep in Newly Diagnosed, Untreated Hypertensives

    Get PDF
    The sympatho-adrenergic system is highly involved in regulating sleep, wake and arousal states, and abnormalities in this system are regarded as a key factor in the development and progression of arterial hypertension. While hypertension is associated with a hyperadrenergic state during wakefulness, the effect of hypertension on plasma-catecholamine levels during sleep is not yet known. Twelve young participants with newly diagnosed, untreated hypertension and twelve healthy controls slept for 7 hours in the sleep laboratory. Before and after sleep, subjects rested in a supine position for 3-h periods of wakefulness. We sampled blood at a fast rate (1/10 min) and monitored blood pressure and heart rate continuously. We show that plasma NE and E levels did not differ between hypertensives and normotensive during sleep as well as before and after sleep. Blood pressure was higher in hypertensives, reaching the largest group difference in the morning after sleep. Unlike in the normotensives, in the hypertensive participants the morning rise in blood pressure did not correlate with the rise in catecholamine levels at awakening. Our results suggest that hypertension in its early stages is not associated with a strong hyperadrenergic state during sleep. In showing a diminished control of blood pressure through sympatho-adrenergic signals in hypertensive participants, our data point towards a possible involvement of dysfunctional sleep-related blood pressure regulation in the development of hypertension

    Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

    Get PDF
    Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior
    corecore