60 research outputs found

    Development and applications of nanobiosensors for sustainable agricultural and food industries : Recent developments, challenges and perspectives

    Get PDF
    The increasing global population and limited natural resources are amongst major challenges in the sustainability of agricultural and food industries, together with the rapid shrinking of land and increasing production cost. Based on the application of nanobiosensors, natural resources can be utilised more efficiently. Particularly, nanobiosensors can be used in a wide range of applications throughout the agri-food route, ranging from detection of soil condition, crop diseases caused by pest/pathogen, management of severe infections, and diagnostic tools for detection of pests during storage and ensures final quality assurance. Here, we review the various recent applications of nanobiosensors in agricultural and food industries. The advantages and limitations are also discussed to provide useful insights to both academic and industrial researchers. Moreover, recent patents have been discussed to provide the latest trends in biosensors for agri-food industry to maintain sustainable development

    Effect of plant growth hormones and abiotic stresses on germination, growth and phosphatase activities in Sorghum bicolor (L.) Moench seeds

    Get PDF
    Phosphatases are widely found in plants having intracellular and extracellular activities. Phosphatases are believed to be important for phosphorous scavenging and remobilization in plants, but its role in adaptation to abiotic stresses and growth hormones at germination level has not been critically evaluated. To address this issue, the effect of ABA, GA3, NaCl and drought on germination, growth, acid and alkaline phosphatases in sorghum embryos and endosperm was investigated. Germination decreased markedly under ABA, NaCl and drought treatments. Subsequently, a remarkable decrease in fresh weight and dry weight was observed in embryos under ABA and NaCl treatments, whereas a significant decrease in endosperm fresh weight was observed only under drought stress. However, no significant change in endosperm dry weight was observed under other any treatment. Furthermore, a considerable increase in acid phosphatse activity was observed in embryos under GA3 and NaCl treatments, however, alkaline phosphatase activity was substantially higher under all treatments. In endosperm, a significant increase in acid phosphatase activity was observed under ABA and NaCl treatments. Alkaline phosphatse activity was apparently higher under GA3. However, no substantial changes in acid or alkaline phosphatase activities were observed after drought treatments. These findings suggest that changes in the phosphatase enzymes might play important roles in adaptation of germinating seeds, to changing environmental conditions. Based upon these results, a possible physiological role of phosphatases in germinating sorghum seeds is discussed. Key words: Growth, sorghum, acid phosphatase, alkaline phosphatase. African Journal of Biotechnology Vol.3(6) 2004: 308-31

    Development and validation of a scale to measure faculty attitudes toward open educational resources

    Get PDF
    An ATOER scale (Attitudes Towards Open Educational Resources) was developed to identify positive and negative predispositions towards Open Educational Resources (OER) amongst teachers. Data was classified into three main constructs: awareness, sharing of resources, and adoption and use of OER. This instrument will help to understand psychological determinants of teachers that might influence adoption and use of OER. The content validity of the tool is explained in the presentation

    Bio-Nanoparticles Mediated Transesterification of Algal Biomass for Biodiesel Production

    Get PDF
    Immense use of fossil fuels leads to various environmental issues, including greenhouse gas emissions, reduced oil reserves, increased energy costs, global climate changes, etc. These challenges can be tackled by using alternative renewable fuels such as biodiesel. Many studies reported that biodiesel production from microalgae biomass is an environment-friendly and energy-efficient approach, with significantly improved fuel quality in terms of density, calorific value and viscosity. Biodiesel is produced using the transesterification process and the most sustainable method is utilizing enzymes for transesterification. Lipase is an enzyme with excellent catalytic activity, specificity, enantio-selectivity, compatibility and stability and hence it is applied in microalgae biodiesel production. But, difficulty in enzymatic recovery, high enzyme cost and minimal reaction rate are some of its drawbacks that have to be addressed. In this aspect, the nanotechnological approach of lipase immobilization in producing microalgae biodiesel is a promising way to increase production yield and it is due to the adsorption efficiency, economic benefit, recyclability, crystallinity, durability, stability, environmental friendliness and catalytic performance of the bio-nanoparticles used. Through increasing post-harvest biomass yield, absorption of CO2 and photosynthesis in the photobioreactor, the use of nanoparticle immobilized lipase during the generation of biodiesel from microalgae has the potential to also remove feedstock availability constraints. This review article discusses the production of microalgae biodiesel, and effect of nanoparticles and immobilized lipase nanoparticles on biodiesel production. The advantages of using lipase nanoparticles and the challenges in introducing the immobilized lipase on nanoparticles in large-scale microalgae biodiesel production are also discussed. Reducing the water and land use, energy and nutrient footprints of integrated algae-based operations must be the main goal of larger-scale experiments as well as ongoing research and development in order to expedite the adoption of microalgae-based biodiesel production. Also, the cost-effectiveness and large-scale availability of nanoparticles and the impact of lipase nanoparticles on engine performance should be analyzed for commercialization of microalgae biodiesel

    Interplay of fission modes in mass distribution of light actinide nuclei 225,227Pa

    Get PDF
    Fission-fragment mass distributions were measured for 225,227Pa nuclei formed in fusion reactions of 19F + 206, 208Pb around fusion barrier energies. Mass-angle correlations do not indicate any quasi-fission like events in this bombarding energy range. Mass distributions were fitted by Gaussian distribution and mass variance extracted. At below-barrier energies, the mass variance was found to increase with decrease in energy for both nuclei. Results from present work were compared with existing data for induced fission of 224, 226Th and 228U around barrier energies. Enhancement in mass variance of 225, 227Pa nuclei at below-barrier energies shows evidence for presence of asymmetric fission events mixed with symmetric fission events. This is in agreement with the results of mass distributions of nearby nuclei 224, 226Th and 228U where two-mode fission process was observed. Two-mode feature of fission arises due to the shell effects changing the landscape of the potential energy surfaces at low excitation energies. The excitation-energy dependence of the mass variance gives strong evidence for survival of microscopic shell effects in fission of light actinide nuclei 225, 227Pa with initial excitation energy ~30 - 50 MeV

    Development of a scale to measure faculty attitude towards open educational resources

    Get PDF
    The study involves understanding why some teachers share educational resources and others do not. The paper describes the methodology for the development of an instrument to measure Attitude towards Open Educational Resources (ATOER) within the framework of research projects in the global south. It discusses various phases of development and validation of a scale which can measure faculty attitude towards Open Educational Resources (OER) and to present the findings through evidence of the impact of OER. The scale will help institutions to plan use of OER in teaching and learning by identifying positive and negative faculty attitudes

    Comprehensive survey on nanobiomaterials for bone tissue engineering applications

    Get PDF
    One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering

    Development of a novel HPTLC fingerprint method for simultaneous estimation of berberine and rutin in medicinal plants and their pharmaceutical preparations followed by its application in antioxidant assay

    Get PDF
    The present study was designed to develop and validate a high-performance thin-layer chromatography (HPTLC) system for the simultaneous quantitative determination of berberine and rutin in Tinospora cordifolia extract and their pharmaceutical preparations. Chromatographic development was done using a blend of n-hexane, ethyl acetate, glacial acetic acid and methanol (10:1.1:1.1:2.5, v/v) as the mobile phase. Detection was completed densitometrically at 254 nm. The RF estimation of berberine and rutin was observed to be 0.67 ± 0.02 and 0.47 ± 0.02, respectively. The developed HPTLC method was validated according to ICH guidelines; the method was specific, linear and accurate and can be used to determine berberine and rutin in marketed herbal preparations. The Tinospora cordifolia plant extract was further evaluated for antioxidant activity using HPTLC, and berberine was found to be more active than rutin during DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity. The method was found simple, rapid, accurate, specific and robust for the analysis of berberine and rutin in crude drug using the same method

    Molecular biology interventions for activity improvement and production of industrial enzymes

    Get PDF
    Metagenomics and directed evolution technology have brought a revolution in search of novel enzymes from extreme environment and improvement of existing enzymes and tuning them towards certain desired properties. Using advanced tools of molecular biology i.e. next generation sequencing, site directed mutagenesis, fusion protein, surface display, etc. now researchers can engineer enzymes for improved activity, stability, and substrate specificity to meet the industrial demand. Although many enzymatic processes have been developed up to industrial scale, still there is a need to overcome limitations of maintaining activity during the catalytic process. In this article recent developments in enzymes industrial applications and advancements in metabolic engineering approaches to improve enzymes efficacy and production are reviewe
    • …
    corecore