16 research outputs found

    Oceaanwetenschap

    Get PDF

    Engineering cytokine therapeutics

    Get PDF
    Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering. In this Review, we discuss how the development of bioanalytical methods, such as sequencing and high-resolution imaging combined with genetic techniques, have facilitated a better understanding of cytokine biology. We then present an overview of therapeutics arising from cytokine re-engineering, targeting and delivery, mRNA therapeutics and cell therapy. We also highlight the application of these strategies to adjust the immunological imbalance in different immune-mediated disorders, including cancer, infection and autoimmune diseases. Finally, we look ahead to the hurdles that must be overcome before cytokine therapeutics can live up to their full potential

    Acid ceramidase regulates innate immune memory

    Get PDF
    Innate immune memory, also called “trained immunity,” is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.</p

    Acid ceramidase regulates innate immune memory

    Get PDF
    Innate immune memory, also called “trained immunity,” is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.</p

    Trained immunity:Target for prophylaxis and therapy

    No full text
    Trained immunity is a de facto memory for innate immune responses, leading to long-term functional reprogramming of innate immune cells. In physiological conditions, trained immunity leads to adaptive states that enhance resistance against pathogens and contributes to immunosurveillance. Dysregulated trained immunity can however lead either to defective innate immune responses in severe infections or cancer or to inflammatory and autoimmune diseases if trained immunity is inappropriately activated. Here, we review the immunological and molecular mechanisms that mediate trained immunity induction and propose that trained immunity represents an important target for prophylactic and therapeutic approaches in human diseases. On the one hand, we argue that novel approaches that induce trained immunity may enhance vaccine efficacy. On the other hand, induction of trained immunity in cancer, and inhibition of exaggerated induction of trained immunity in inflammatory disorders, are viable targets amenable for new therapeutic approaches.</p

    Nanoengineering Apolipoprotein A1-Based Immunotherapeutics

    Get PDF
    In the slipstream of targeting the adaptive immune system, innate immunotherapy strategies are being developed. In this context, technologies based on natural carrier vehicles that inherently interact with the innate immune system, are increasingly being considered. Immunoregulatory nanotherapeutics based on natural apolipoprotein A1 (apoA1) are discussed here. This protein is a helical, amphipathic macromolecule and the main constituent of high-density lipoprotein. In that capacity, apoA1 interacts specifically with innate immune cells, such as monocytes and macrophages, to collect and transport lipophilicmolecules throughout the body. Exactly these unique features make apoA1 a compelling elementary constituent of biocompatible self-assembled nanotherapeutics. Such apoA1-based nanotherapeutics (A1-nanotherapeutics) can be engineered and functionalized to induce or mitigate an innate immune response or to orchestrate an adaptive immune response through antigen delivery to dendritic cells. The authors first discuss apoA1's properties and how these can be exploited to generate libraries of A1-nanotherapeutics using advanced manufacturing approaches such as microfluidics or continuous flow methods. Using high-throughput in vitro screening methods and in vivo imagingto identify promising formulations are then recommend. Finally, Three distinct immunotherapy strategies are proposed to effectively treat a variety of diseases—including cancer, infection, and cardiovascular disease—and promote allograft survival in transplantation

    Prosaposin mediates inflammation in atherosclerosis

    No full text
    Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator. Using myeloid cell–specific nanobiologics in apolipoprotein E–deficient (Apoe−/−) mice, we found that targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macrophages’ inflammatory activity. By investigating transcriptome modifications, we identified Psap, a gene encoding the lysosomal protein prosaposin, as closely related with mTOR signaling. Subsequent in vitro experiments revealed that Psap inhibition suppressed both glycolysis and oxidative phosphorylation. Transplantation of Psap−/− bone marrow to low-density lipoprotein receptor knockout (Ldlr−/−) mice led to a reduction in atherosclerosis development and plaque inflammation. Last, we confirmed the relationship between PSAP expression and inflammation in human carotid atherosclerotic plaques. Our findings provide mechanistic insights into the development of atherosclerosis and identify prosaposin as a potential therapeutic target
    corecore