23 research outputs found

    Least area incompressible surfaces in 3-manifolds

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46610/1/222_2005_Article_BF02095997.pd

    Minimal immersions of closed surfaces in hyperbolic three-manifolds

    Full text link
    We study minimal immersions of closed surfaces (of genus g≥2g \ge 2) in hyperbolic 3-manifolds, with prescribed data (σ,tα)(\sigma, t\alpha), where σ\sigma is a conformal structure on a topological surface SS, and αdz2\alpha dz^2 is a holomorphic quadratic differential on the surface (S,σ)(S,\sigma). We show that, for each t∈(0,τ0)t \in (0,\tau_0) for some τ0>0\tau_0 > 0, depending only on (σ,α)(\sigma, \alpha), there are at least two minimal immersions of closed surface of prescribed second fundamental form Re(tα)Re(t\alpha) in the conformal structure σ\sigma. Moreover, for tt sufficiently large, there exists no such minimal immersion. Asymptotically, as t→0t \to 0, the principal curvatures of one minimal immersion tend to zero, while the intrinsic curvatures of the other blow up in magnitude.Comment: 16 page

    Doubly connected minimal surfaces and extremal harmonic mappings

    Get PDF
    The concept of a conformal deformation has two natural extensions: quasiconformal and harmonic mappings. Both classes do not preserve the conformal type of the domain, however they cannot change it in an arbitrary way. Doubly connected domains are where one first observes nontrivial conformal invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue for quasiconformal and harmonic mappings, respectively. Combining these concepts we obtain sharp estimates for quasiconformal harmonic mappings between doubly connected domains. We then apply our results to the Cauchy problem for minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a sharp estimate of the modulus of a doubly connected minimal surface that evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde

    Parabolic stable surfaces with constant mean curvature

    Full text link
    We prove that if u is a bounded smooth function in the kernel of a nonnegative Schrodinger operator −L=−(Δ+q)-L=-(\Delta +q) on a parabolic Riemannian manifold M, then u is either identically zero or it has no zeros on M, and the linear space of such functions is 1-dimensional. We obtain consequences for orientable, complete stable surfaces with constant mean curvature H∈RH\in\mathbb{R} in homogeneous spaces E(κ,τ)\mathbb{E}(\kappa,\tau) with four dimensional isometry group. For instance, if M is an orientable, parabolic, complete immersed surface with constant mean curvature H in H2×R\mathbb{H}^2\times\mathbb{R}, then ∣H∣≤1/2|H|\leq 1/2 and if equality holds, then M is either an entire graph or a vertical horocylinder.Comment: 15 pages, 1 figure. Minor changes have been incorporated (exchange finite capacity by parabolicity, and simplify the proof of Theorem 1)
    corecore