23 research outputs found
Least area incompressible surfaces in 3-manifolds
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46610/1/222_2005_Article_BF02095997.pd
Minimal immersions of closed surfaces in hyperbolic three-manifolds
We study minimal immersions of closed surfaces (of genus ) in
hyperbolic 3-manifolds, with prescribed data , where
is a conformal structure on a topological surface , and is a holomorphic quadratic differential on the surface . We
show that, for each for some , depending only on
, there are at least two minimal immersions of closed surface
of prescribed second fundamental form in the conformal structure
. Moreover, for sufficiently large, there exists no such minimal
immersion. Asymptotically, as , the principal curvatures of one
minimal immersion tend to zero, while the intrinsic curvatures of the other
blow up in magnitude.Comment: 16 page
Doubly connected minimal surfaces and extremal harmonic mappings
The concept of a conformal deformation has two natural extensions:
quasiconformal and harmonic mappings. Both classes do not preserve the
conformal type of the domain, however they cannot change it in an arbitrary
way. Doubly connected domains are where one first observes nontrivial conformal
invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue
for quasiconformal and harmonic mappings, respectively. Combining these
concepts we obtain sharp estimates for quasiconformal harmonic mappings between
doubly connected domains. We then apply our results to the Cauchy problem for
minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a
sharp estimate of the modulus of a doubly connected minimal surface that
evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde
Parabolic stable surfaces with constant mean curvature
We prove that if u is a bounded smooth function in the kernel of a
nonnegative Schrodinger operator on a parabolic Riemannian
manifold M, then u is either identically zero or it has no zeros on M, and the
linear space of such functions is 1-dimensional. We obtain consequences for
orientable, complete stable surfaces with constant mean curvature
in homogeneous spaces with four
dimensional isometry group. For instance, if M is an orientable, parabolic,
complete immersed surface with constant mean curvature H in
, then and if equality holds, then
M is either an entire graph or a vertical horocylinder.Comment: 15 pages, 1 figure. Minor changes have been incorporated (exchange
finite capacity by parabolicity, and simplify the proof of Theorem 1)