81 research outputs found

    Simplified quantum logic with trapped ions

    Full text link
    We describe a simplified scheme for quantum logic with a collection of laser-cooled trapped atomic ions. Building on the scheme of Cirac and Zoller, we show how the fundamental controlled-NOT gate between a collective mode of ion motion and the internal states of a single ion can be reduced to a single laser pulse, and the need for a third auxiliary internal electronic state can be eliminated.Comment: 8 pages, PostScript, submitted to Physical Review A, Rapid Communication

    Quantum harmonic oscillator state synthesis and analysis

    Full text link
    Experiments are described in which a single, harmonically bound, beryllium ion in a Paul trap is put into Fock, thermal, coherent, squeezed, and Schroedinger cat states. Experimental determinations of the density matrix and the Wigner function are described. A simple calculation of the decoherence of a superposition of coherent states due to an external electric field is given.Comment: 13 pages, LaTeX2e, special style file spie.sty included, 11 eps figures included using epsfig, graphicx, subfigure, floatflt macros. To appear in Proc. Conf. on Atom Optics, San Jose, CA, Feb. 1997, edited by M. G. Prentiss and W. D. Phillips, SPIE Proc. # 299

    Heating of trapped ions from the quantum ground state

    Get PDF
    We have investigated motional heating of laser-cooled 9Be+ ions held in radio-frequency (Paul) traps. We have measured heating rates in a variety of traps with different geometries, electrode materials, and characteristic sizes. The results show that heating is due to electric-field noise from the trap electrodes which exerts a stochastic fluctuating force on the ion. The scaling of the heating rate with trap size is much stronger than that expected from a spatially uniform noise source on the electrodes (such as Johnson noise from external circuits), indicating that a microscopic uncorrelated noise source on the electrodes (such as fluctuating patch-potential fields) is a more likely candidate for the source of heating.Comment: With minor changes. 24 pages, including 7 figures. Submitted by Phys. Rev.

    Quantum state manipulation of trapped atomic ions

    Get PDF
    A single laser-cooled and trapped 9Be+ ion is used to investigate methods of coherent quantum-state synthesis and quantum logic. We create and characterize nonclassical states of motion including "Schroedinger-cat" states. A fundamental quantum logic gate is realized which uses two states of the quantized ion motion and two ion internal states as qubits. We explore some of the applications for, and problems in realizing, quantum computation based on multiple trapped ions.Comment: Postscript only. 21 pages text, 5 figures., Proc. Workshop on Quantum Computing, Santa Barbara, CA, Dec. 1996, Submitted to Proc. Roy. Soc.

    Fractal Noise in Quantum Ballistic and Diffusive Lattice Systems

    Full text link
    We demonstrate fractal noise in the quantum evolution of wave packets moving either ballistically or diffusively in periodic and quasiperiodic tight-binding lattices, respectively. For the ballistic case with various initial superpositions we obtain a space-time self-affine fractal Ψ(x,t)\Psi(x,t) which verify the predictions by Berry for "a particle in a box", in addition to quantum revivals. For the diffusive case self-similar fractal evolution is also obtained. These universal fractal features of quantum theory might be useful in the field of quantum information, for creating efficient quantum algorithms, and can possibly be detectable in scattering from nanostructures.Comment: 9 pages, 8 postscript figure

    Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    Full text link
    We report preparation in the ground state of collective modes of motion of two trapped 9Be+ ions. This is a crucial step towards realizing quantum logic gates which can entangle the ions' internal electronic states. We find that heating of the modes of relative ion motion is substantially suppressed relative to that of the center-of-mass modes, suggesting the importance of these modes in future experiments.Comment: 5 pages, including 3 figures. RevTeX. PDF and PostScript available at http://www.bldrdoc.gov/timefreq/ion/qucomp/papers.htm . final (published) version. Eq. 1 and Table 1 slightly different from original submissio

    Engineering arbitrary motional ionic state through realistic intensity-fluctuating laser pulses

    Full text link
    We present a reliable scheme for engineering arbitrary motional ionic states through an adaptation of the projection synthesis technique for trapped-ion phenomena. Starting from a prepared coherent motional state, the Wigner function of the desired state is thus sculpted from a Gaussian distribution. The engineering process has also been developed to take into account the errors arising from intensity fluctuations in the exciting-laser pulses required for manipulating the electronic and vibrational states of the trapped ion. To this end, a recently developed phenomenological-operator approach that allows for the influence of noise will be applied. This approach furnishes a straightforward technique to estimate the fidelity of the prepared state in the presence of errors, precluding the usual extensive ab initio calculations. The results obtained here by the phenomenological approach, to account for the effects of noise in our engineering scheme, can be directly applied to any other process involving trapped-ion phenomena.Comment: more information at http://www.df.ufscar.br/~quantum

    Quantum state engineering on an optical transition and decoherence in a Paul trap

    Get PDF
    A single Ca+ ion in a Paul trap has been cooled to the ground state of vibration with up to 99.9% probability. Starting from this Fock state |n=0> we have demonstrated coherent quantum state manipulation on an optical transition. Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar number of Rabi oscillations after preparation of the ion in the |n=1> Fock state. The coherence of optical state manipulation is only limited by laser and ambient magnetic field fluctuations. Motional heating has been measured to be as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure

    An efficient scheme for the deterministic maximal entanglement of N trapped ions

    Get PDF
    We propose a method for generating maximally entangled states of N two-level trapped ions. The method is deterministic and independent of the number of ions in the trap. It involves a controlled-NOT acting simultaneously on all the ions through a dispersive interaction. We explore the potential application of our scheme for high precision frequency standards.Comment: 4 pages, no figures, submitted to PRL, under review, Revised Version: Incorporated referee comment
    • …
    corecore