3 research outputs found

    Primary CNS T-cell Lymphomas: A Clinical, Morphologic, Immunophenotypic, and Molecular Analysis.

    Get PDF
    Primary central nervous system (CNS) lymphomas are relatively rare with the most common subtype being diffuse large B-cell lymphoma. Primary CNS T-cell lymphomas (PCNSTL) account for 1 mutation, and none showed overlapping mutations. These included mutations in DNMT3A, KRAS, JAK3, STAT3, STAT5B, GNB1, and TET2 genes, genes implicated previously in other T-cell neoplasms. The outcome was heterogenous; 2 patients are alive without disease, 4 are alive with disease, and 6 died of disease. In conclusion, PCNSTLs are histologically and genomically heterogenous with frequent phenotypic aberrancy and a cytotoxic phenotype in most cases

    CFTR dysregulation drives active selection of the gut microbiome.

    No full text
    Patients with cystic fibrosis (CF) have altered fecal microbiomes compared to those of healthy controls. The magnitude of this dysbiosis correlates with measures of CF gastrointestinal (GI) disease, including GI inflammation and nutrient malabsorption. However, whether this dysbiosis is caused by mutations in the CFTR gene, the underlying defect in CF, or whether CF-associated dysbiosis augments GI disease was not clear. To test the relationships between CFTR dysfunction, microbes, and intestinal health, we established a germ-free (GF) CF mouse model and demonstrated that CFTR gene mutations are sufficient to alter the GI microbiome. Furthermore, flow cytometric analysis demonstrated that colonized CF mice have increased mesenteric lymph node and spleen TH17+ cells compared with non-CF mice, suggesting that CFTR defects alter adaptive immune responses. Our findings demonstrate that CFTR mutations modulate both the host adaptive immune response and the intestinal microbiome
    corecore