37 research outputs found

    Computational Polyethylene-Ceramic Composite Plate Design and Optimization

    Get PDF
    A composite designed Ultra High Molecular Weight Polyethylene (UHMWPE) reinforced by a material with a failure mode that will strengthen the system may significantly improve on modern armor designs. UHMWPE is considerably less dense than steel or high density ceramics. It is reasonable to consider making improvements to the weight-performance of armor by using the lower density UHMWPE and combining it with inserts of a high-density ceramic. A cellular ceramic encapsulated by rubber may significantly increase the amount of kinetic energy a composite will absorb through a phase transition. It is theorized that a series of ceramic inserts distributed in a polymer matrix will result in an increased impact resistance. Shock propagation in the ceramic will be minimal, and the elastomeric properties of the polymer will provide maximum tensile support. The ceramic inserts will act as a stress concentrator and physical resistor to the impacting object. When the ceramic inserts are shattered by the impactor they will impart a resistive force by forcing additional deformation in the polymer matrix. Study of design variations by examination of multiple geometries for the ceramic inserts will maximize the impact resistance of the structure. The resistance of the structure is enhanced by providing a multi-dimensional failure mode. The ceramic, once shattered, will still occupy space, forcing additional plastic deformation, and additional deformation in the impactor

    Tribological properties of boride based thermal diffusion coatings

    No full text
    Engineering components, e.g. tubing systems for the down-hole applications in the oil and gas industry (in particular, sucker rod pumps, progressing cavity pumps and some other components of the artificial lifting systems), as well as numerous valves and seats, bearings, gears and plungers, require protection against friction and sliding abrasion service conditions. The hard boride based coatings on steels and alloys obtained through the thermal diffusion process have a high potential for these severe application conditions over many other types of coatings as they can be obtained on the entire working surfaces of large size and complex shape products. Intensive tribological studies of the iron boride based coatings on carbon steel obtained at Endurance Technologies Inc. have been conducted using the Cameron-Plint testing unit (reciprocating sliding of the metallic rod under the load over a flat surface of the coated samples). The friction wear loss, friction coefficient and structural changes of the coatings have been studied in dry and lubricating (water-oil) friction conditions, which simulate actual application conditions. It was demonstrated that the obtained boride coatings have the friction loss significantly smaller than untreated steel (e.g. 3c10-30 times in the dry conditions and at least 5 times in the lubricating conditions) with no peeling and flaking-off. The friction coefficients of the boride coatings are steady over the test duration. The influence of the thickness on the boride coatings performance is demonstrated. The encouraging results are explained by the specific coating structure of the hard coating obtained through the thermal diffusion process and the thin 'tribofilm' formed during a friction mode.Peer reviewed: YesNRC publication: Ye
    corecore