671 research outputs found
Chaos-Order Transition in Matrix Theory
Classical dynamics in SU(2) Matrix theory is investigated. A classical
chaos-order transition is found. For the angular momentum small enough (even
for small coupling constant) the system exhibits a chaotic behavior, for
angular momentum large enough the system is regular.Comment: 14 pages, Latex, 10 figure
Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks
The origin of the micro-Gauss magnetic fields in galaxy clusters is one of
the outstanding problem of modern cosmology. We have performed
three-dimensional particle-in-cell simulations of the nonrelativistic Weibel
instability in an electron-proton plasma, in conditions typical of cosmological
shocks. These simulations indicate that cluster fields could have been produced
by shocks propagating through the intergalactic medium during the formation of
large-scale structure or by shocks within the cluster. The strengths of the
shock-generated fields range from tens of nano-Gauss in the intercluster medium
to a few micro-Gauss inside galaxy clusters.Comment: 4 pages, 2 color figure
Surface Electronic Structures and Field Emission Currents at Sodium Overlayers on Low-Index Tungsten Surfaces
The total energy distributions (TEDs) of the emission currents in field
emission and surface photofield emission and the overlayer-induced
modifications in the surface electronic structures from the technologically
important W surfaces with the commensurate W(100)/Na c(2x2), W(110)/Na (2x2)
and W(111)/Na (1x1) overlayers are calculated. The TEDs obtained by our recent
numerical method that extends the full-potential linear augmented plane wave
method for the electronic structures to the study of field and photofield
emission are used to interpret the shifts of the peaks in the experimental TEDs
in field emission and photofield emission from the W(100) and W(110) surfaces
at sub-monolayer and monolayer Na coverage. Hybridization of the 3s Na states
with the pairs of dz2-like surface states of the strong Swanson hump in clean
W(100) and surface resonances in clean W(111) below the Fermi energy shifts
these W states by about -1.2 eV and -1.0 eV, thus stabilizing these states, to
yield new strong peaks in the TEDs in field emission and photofield emission
from W(100)/Na c(2x2) and W(111)/Na (1x1) respectively. The effect of Na
intralayer interactions are discussed and are shown to shift the strong s- and
p-like peaks in the surface density of states of W(110) below and above the
Fermi energy respectively to lower energy with increased Na coverage, in
agreement with experiments.Comment: 12 page
Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL
New laboratory data of CHCHCN (vinyl cyanide) in its ground and
vibrationally excited states at the microwave to THz domain allow searching for
these excited state transitions in the Orion-KL line survey.
Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz
spectrum provided measurements of CHCHCN covering a spectral range of
18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the
18-40 GHz region and by ab-initio anharmonic force field calculations. For
analyzing the emission lines of CHCHCN species detected in Orion-KL we used
the excitation and radiative transfer code (MADEX) at LTE conditions. The
rotational transitions of the ground state of this molecule emerge from four
cloud components of hot core nature which trace the physical and chemical
conditions of high mass star forming regions in the Orion-KL Nebula. The total
column density of CHCHCN in the ground state is (3.00.9)x10
cm. We report on the first interstellar detection of transitions in the
v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in
Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such
as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the
v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are
populated under warm and dense conditions, so they probe the hottest parts of
the Orion-KL source. Column density and rotational and vibrational temperatures
for CHCHCN in their ground and excited states, as well as for the
isotopologues, have been constrained by means of a sample of more than 1000
lines in this survey. Moreover, we present the detection of methyl isocyanide
(CHNC) for the first time in Orion-KL and a tentative detection of vinyl
isocyanide (CHCHNC) and give column density ratios between the cyanide and
isocyanide isomers.Comment: 46 pages, 22 figures, 14 tables, 9 online table
The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations
Long-lived >100 MeV emission has been a common feature of most Fermi-LAT
detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs
080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent
with being produced by synchrotron emission of electrons accelerated to high
energy by the relativistic collisionless shock propagating into the weakly
magnetized medium. Here we show that this high-energy afterglow emission
constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8}
mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than
the previous constraint by X-ray afterglow observations on day scale. This
suggests that the preshock magnetic field is strongly amplified, most likely by
the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte
High-temperature transport properties of BaSn1−xScxO3−δ ceramic materials as promising electrolytes for protonic ceramic fuel cells
Protonic ceramic fuel cells (PCFCs) offer a convenient means for electrochemical conversion of chemical energy into electricity at intermediate temperatures with very high efficiency. Although BaCeO3- and BaZrO3-based complex oxides have been positioned as the most promising PCFC electrolytes, the design of new protonic conductors with improved properties is of paramount importance. Within the present work, we studied transport properties of scandium-doped barium stannate (Sc-doped BaSnO3). Our analysis included the fabrication of porous and dense BaSn1−xScxO3−δ ceramic materials (0 ⩽ x ⩽ 0.37), as well as a comprehensive analysis of their total, ionic, and electronic conductivities across all the experimental conditions realized under the PCFC operation: both air and hydrogen atmospheres with various water vapor partial pressures (p(H2O)), and a temperature range of 500–900 °C. This work reports on electrolyte domain boundaries of the undoped and doped BaSnO3 for the first time, revealing that pure BaSnO3 exhibits mixed ionic-electronic conduction behavior under both oxidizing and reducing conditions, while the Sc-doping results in the gradual improvement of ionic (including protonic) conductivity, extending the electrolyte domain boundaries towards reduced atmospheres. This latter property makes the heavily-doped BaSnO3 representatives attractive for PCFC applications. [Figure not available: see fulltext.] © 2022, The Author(s).We would like to give special thanks to Natalia POPOVA and Thomas BEAVITT for their performed proofreading
DANSSino: a pilot version of the DANSS neutrino detector
DANSSino is a reduced pilot version of a solid-state detector of reactor
antineutrinos (to be created within the DANSS project and installed under the
industrial 3 GW(th) reactor of the Kalinin Nuclear Power Plant -- KNPP).
Numerous tests performed at a distance of 11 m from the reactor core
demonstrate operability of the chosen design and reveal the main sources of the
background. In spite of its small size (20x20x100 ccm), the pilot detector
turned out to be quite sensitive to reactor antineutrinos, detecting about 70
IBD events per day with the signal-to-background ratio about unity.Comment: 16 pages, 11 figures, 3 tables. arXiv admin note: substantial text
overlap with arXiv:1304.369
Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions
Solid oxide fuel cells (SOFCs) and electrolysis cells (SOECs) are promising energy conversion devices, on whose basis green hydrogen energy technologies can be developed to support the transition to a carbon-free future. As compared with oxygen-conducting cells, the operational temperatures of protonic ceramic fuel cells (PCFCs) and electrolysis cells (PCECs) can be reduced by several hundreds of degrees (down to low- and intermediate-temperature ranges of 400–700 °C) while maintaining high performance and efficiency. This is due to the distinctive characteristics of charge carriers for proton-conducting electrolytes. However, despite achieving outstanding lab-scale performance, the prospects for industrial scaling of PCFCs and PCECs remain hazy, at least in the near future, in contrast to commercially available SOFCs and SOECs. In this review, we reveal the reasons for the delayed technological development, which need to be addressed in order to transfer fundamental findings into industrial processes. Possible solutions to the identified problems are also highlighted. © 2022 The Author
Temperature and pressure evolution of the crystal structure of Ax(Fe1-ySe)2 (A = Cs, Rb, K) studied by synchrotron powder diffraction
Temperature-dependent synchrotron powder diffraction on Cs0.83(Fe0.86Se)2
revealed first order I4/m to I4/mmm structural transformation around 216{\deg}C
associated with the disorder of the Fe vacancies. Irreversibility observed
during the transition is likely associated with a mobility of intercalated
Alkali atoms. Pressure-dependent synchrotron powder diffraction on
Cs0.83(Fe1-ySe)2, Rb0.85(Fe1-ySe)2 and K0.8(Fe1-ySe)2 (y ~ 0.14) indicated that
the I4/m superstructure reflections are present up to pressures of 120 kbar.
This may indicate that the ordering of the Fe vacancies is present in both
superconducting and non-superconductive states.Comment: 11 pages, 5 figures, 1 tabl
- …