110 research outputs found

    Transition Metal Trichalcogenides as Novel Layered Nano Species

    Get PDF
    In search for new materials for nanoelectronics, many efforts have been put into development of chem-istry and physics of graphene, and, more recently, of other inorganic layered compounds having a bandgap (h-BN, MoS2 etc.). Here we introduce a new view on the family of transition metal trichalcogenides MQ3 (M=Ti, Zr, Nb, Ta; Q=S, Se), which were earlier considered as quasi-one-dimensional systems, and demon-strate that they also may be regarded as layered species suitable for exfoliation by a chemical method. Stable, concentrated colloidal dispersions of high-quality crystalline NbS3 and NbSe3 nanoribbons down to mono- and few-layer-thick are prepared by ultrasonic treatment of the bulk compound in several common organic solvents (DMF, NMP, CH3CN, iPrOH, H2O/EtOH). The dispersions and thin films prepared from them by vacuum filtration or spraying are characterized by a set of physical-chemical methods. Current-voltage characteristics of the NbS3 films show that charge carrier mobility is as high as 1200 – 2400 cm2V-1s-1, exceeding that of MoS2 and making NbQ3 promising potential candidates for field-effect transistors. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3522

    Double exponential stability of quasi-periodic motion in Hamiltonian systems

    Get PDF
    We prove that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially stable in the sense that nearby solutions remain close to the torus for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the torus. We also prove that for an arbitrary small perturbation of a generic integrable Hamiltonian system, there is a set of almost full positive Lebesgue measure of KAM tori which are doubly exponentially stable. Our results hold true for real-analytic but more generally for Gevrey smooth systems

    Magnetic Reconnection in Extreme Astrophysical Environments

    Full text link
    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfv\'en transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic reconnection). Article is based on an invited review talk at the Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA; February 8-12, 2010). 30 pages, no figure

    Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics

    Full text link
    The paper is devoted to the prospects of using the laser radiation interaction with plasmas in the laboratory relativistic astrophysics context. We discuss the dimensionless parameters characterizing the processes in the laser and astrophysical plasmas and emphasize a similarity between the laser and astrophysical plasmas in the ultrarelativistic energy limit. In particular, we address basic mechanisms of the charged particle acceleration, the collisionless shock wave and magnetic reconnection and vortex dynamics properties relevant to the problem of ultrarelativistic particle acceleration.Comment: 58 pages, 19 figure

    First experimental results obtained using the highpower free electron laser at the siberian center for photochemical research

    No full text
    The first lasing near the wavelength of 140 µm was achieved in April 2003 using a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper we briefly describe the design of the FEL driven by an accelerator–recuperator. Characteristics of the electron beam and terahertz laser radiation, obtained in the first experiments, are also presented in the paper.У Сибірському центрі фотохімічних досліджень навесні 2003 року отримана генерація випромінювання з довжиною хвилі 140 мкм на потужному лазері на вільних електронах (ЛВЕ). У роботі коротко описана конструкція ЛВЕ на базі прискорювача рекуператора і представлені результати вимірювання деяких параметрів електронного пучка і терагерцового випромінювання.В Сибирском центре фотохимических исследований весной 2003 года получена генерация излучения с длиной волны 140 мкм на мощном лазере на свободных электронах (ЛСЭ). В работе кратко описана конструкция ЛСЭ на базе ускорителя рекуператора и представлены результаты измерения некоторых параметров электронного пучка и терагерцового излучения

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore