591 research outputs found

    Lower limit on the entropy of black holes as inferred from gravitational wave observations

    Full text link
    Black hole (BH) thermodynamics was established by Bekenstein and Hawking, who made abstract theoretical arguments about the second law of thermodynamics and quantum theory in curved spacetime respectively. Testing these ideas experimentally has, so far, been impractical because the putative flux of Hawking radiation from astrophysical BHs is too small to be distinguished from the rest of the hot environment. Here, it is proposed that the spectrum of emitted gravitational waves (GWs) after the merger of two BHs, in particular the spectrum of GW150914, can be used to infer a lower limit on the magnitude of the entropy of the post-merger BH. This lower bound is potentially significant as it could be of the same order as the Bekenstein-Hawking entropy. To infer this limit, we first assume that the result of the merger is an ultracompact object with an external geometry which is Schwarzschild or Kerr, but with an outer surface which is capable of reflecting in-falling GWs rather than fully absorbing them. If the absence of deviations from the predictions of general relativity in detected GW signals will be verified, we will then obtain a bound on the minimal redshift factor of GWs that emerge from the vicinity of the object's surface. This lack of deviations would also mean that the remnant of the merger has to have a strongly absorbing surface and must then be a BH for all practical purposes. We conclude that a relationship between the minimal redshift factor and the BH entropy, which was first proposed by 't Hooft, could then be used to set a lower bound on the entropy of the post-merger BH.Comment: Corrected error in estimation of current bounds on the entropy. Improved discussion of energy stored in echoes, V3 replaced to match published version, clarifications and explanations adde

    On the Existence of the Logarithmic Correction Term in Black Hole Entropy-Area Relation

    Get PDF
    In this paper we consider a model universe with large extra dimensions to obtain a modified black hole entropy-area relation. We use the generalized uncertainty principle to find a relation between the number of spacetime dimensions and the presence or vanishing of logarithmic prefactor in the black hole entropy-area relation. Our calculations are restricted to the microcanonical ensembles and we show that in the modified entropy-area relation, the microcanonical logarithmic prefactor appears only when spacetime has an even number of dimensions.Comment: 9 Pages, No Figure

    The Impact of Blue Light Irradiation on Keratinocytes in Vitro

    Get PDF
    ABSTRACT Background: This study examined the effects of irradiation with blue light on HaCaT keratinocytes. As irradiation with blue light is known to be antimicrobial, it offers a promising alternative therapy for contaminated wounds. There is evidence that red light promotes wound healing, but the potential benefits of irradiation with blue light have not yet been ad- equately investigated. Methods: The rate of wound closure in sterile and contaminated cells was measured using an in vitro scratch assay wound-healing model. Ad- ditionally, cell viability after treatment was determined using a Sulforho- damine B (SRB) assay. Results: In both the sterile and contaminated groups, treated cells showed delayed wound closure when compared with cells not irradiated with blue light. Additionally, treatment with blue light resulted in poorer viability in the treatment groups. Conclusion: Although irradiation with blue light may offer a promising alternative therapy for reducing bacterial colonization, our data indicate that re-epithelization may be negatively influenced by blue light. Further research is needed to clarify possible wound healing applications

    Entropy Corrections for Schwarzschild and Reissner-Nordstr\"om Black Holes

    Full text link
    Schwarzschild black hole being thermodynamically unstable, corrections to its entropy due to small thermal fluctuations cannot be computed. However, a thermodynamically stable Schwarzschild solution can be obtained within a cavity of any finite radius by immersing it in an isothermal bath. For these boundary conditions, classically there are either two black hole solutions or no solution. In the former case, the larger mass solution has a positive specific heat and hence is locally thermodynamically stable. We find that the entropy of this black hole, including first order fluctuation corrections is given by: {\cal S} = S_{BH} - \ln[\f{3}{R} (S_{BH}/4\p)^{1/2} -2]^{-1} + (1/2) \ln(4\p), where SBH=A/4S_{BH}=A/4 is its Bekenstein-Hawking entropy and RR is the radius of the cavity. We extend our results to four dimensional Reissner-Nordstr\"om black holes, for which the corresponding expression is: {\cal S} = S_{BH} - \f{1}{2} \ln [ {(S_{BH}/\p R^2) ({3S_{BH}}/{\p R^2} - 2\sqrt{{S_{BH}}/{\p R^2 -\a^2}}) \le(\sqrt{{S_{BH}}/{\p R^2}} - \a^2 \ri)}/ {\le({S_{BH}}/{\p R^2} -\a^2 \ri)^2} ]^{-1} +(1/2)\ln(4\p). Finally, we generalise the stability analysis to Reissner-Nordstr\"om black holes in arbitrary spacetime dimensions, and compute their leading order entropy corrections. In contrast to previously studied examples, we find that the entropy corrections in these cases have a different character.Comment: 6 pages, Revtex. References added, minor changes. Version to appear in Class. Quant. Gra
    • …
    corecore