10 research outputs found

    Clinicians’ Perceptions of an Artificial Intelligence–Based Blood Utilization Calculator: Qualitative Exploratory Study

    No full text
    BackgroundAccording to the US Food and Drug Administration Center for Biologics Evaluation and Research, health care systems have been experiencing blood transfusion overuse. To minimize the overuse of blood product transfusions, a proprietary artificial intelligence (AI)–based blood utilization calculator (BUC) was developed and integrated into a US hospital’s electronic health record. Despite the promising performance of the BUC, this technology remains underused in the clinical setting. ObjectiveThis study aims to explore how clinicians perceived this AI-based decision support system and, consequently, understand the factors hindering BUC use. MethodsWe interviewed 10 clinicians (BUC users) until the data saturation point was reached. The interviews were conducted over a web-based platform and were recorded. The audiovisual recordings were then anonymously transcribed verbatim. We used an inductive-deductive thematic analysis to analyze the transcripts, which involved applying predetermined themes to the data (deductive) and consecutively identifying new themes as they emerged in the data (inductive). ResultsWe identified the following two themes: (1) workload and usability and (2) clinical decision-making. Clinicians acknowledged the ease of use and usefulness of the BUC for the general inpatient population. The clinicians also found the BUC to be useful in making decisions related to blood transfusion. However, some clinicians found the technology to be confusing due to inconsistent automation across different blood work processes. ConclusionsThis study highlights that analytical efficacy alone does not ensure technology use or acceptance. The overall system’s design, user perception, and users’ knowledge of the technology are equally important and necessary (limitations, functionality, purpose, and scope). Therefore, the effective integration of AI-based decision support systems, such as the BUC, mandates multidisciplinary engagement, ensuring the adequate initial and recurrent training of AI users while maintaining high analytical efficacy and validity. As a final takeaway, the design of AI systems that are made to perform specific tasks must be self-explanatory, so that the users can easily understand how and when to use the technology. Using any technology on a population for whom it was not initially designed will hinder user perception and the technology’s use

    Chronic Intracranial Pressure Sensor to Assist With Control of Hydrocephalus

    No full text

    A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor

    No full text

    Global Survey of Outcomes of Neurocritical Care Patients: Analysis of the PRINCE Study Part 2

    No full text
    BACKGROUND: Neurocritical care is devoted to the care of critically ill patients with acute neurological or neurosurgical emergencies. There is limited information regarding epidemiological data, disease characteristics, variability of clinical care, and in-hospital mortality of neurocritically ill patients worldwide. We addressed these issues in the Point PRevalence In Neurocritical CarE (PRINCE) study, a prospective, cross-sectional, observational study. METHODS: We recruited patients from various intensive care units (ICUs) admitted on a pre-specified date, and the investigators recorded specific clinical care activities they performed on the subjects during their first 7 days of admission or discharge (whichever came first) from their ICUs and at hospital discharge. In this manuscript, we analyzed the final data set of the study that included patient admission characteristics, disease type and severity, ICU resources, ICU and hospital length of stay, and in-hospital mortality. We present descriptive statistics to summarize data from the case report form. We tested differences between geographically grouped data using parametric and nonparametric testing as appropriate. We used a multivariable logistic regression model to evaluate factors associated with in-hospital mortality. RESULTS: We analyzed data from 1545 patients admitted to 147 participating sites from 31 countries of which most were from North America (69%, N = 1063). Globally, there was variability in patient characteristics, admission diagnosis, ICU treatment team and resource allocation, and in-hospital mortality. Seventy-three percent of the participating centers were academic, and the most common admitting diagnosis was subarachnoid hemorrhage (13%). The majority of patients were male (59%), a half of whom had at least two comorbidities, and median Glasgow Coma Scale (GCS) of 13. Factors associated with in-hospital mortality included age (OR 1.03; 95% CI, 1.02 to 1.04); lower GCS (OR 1.20; 95% CI, 1.14 to 1.16 for every point reduction in GCS); pupillary reactivity (OR 1.8; 95% CI, 1.09 to 3.23 for bilateral unreactive pupils); admission source (emergency room versus direct admission [OR 2.2; 95% CI, 1.3 to 3.75]; admission from a general ward versus direct admission [OR 5.85; 95% CI, 2.75 to 12.45; and admission from another ICU versus direct admission [OR 3.34; 95% CI, 1.27 to 8.8]); and the absence of a dedicated neurocritical care unit (NCCU) (OR 1.7; 95% CI, 1.04 to 2.47). CONCLUSION: PRINCE is the first study to evaluate care patterns of neurocritical patients worldwide. The data suggest that there is a wide variability in clinical care resources and patient characteristics. Neurological severity of illness and the absence of a dedicated NCCU are independent predictors of in-patient mortality.status: publishe

    Prostaglandin biosynthesis in the microcirculation: Regulation by endothelial and non-endothelial factors

    No full text
    corecore