325 research outputs found
Comparison of Genome-Wide Association Scans for Quantitative and Observational Measures of Human Hair Curvature.
Previous genetic studies on hair morphology focused on the overall morphology of the hair using data collected by self-report or researcher observation. Here, we present the first genome-wide association study (GWAS) of a micro-level quantitative measure of hair curvature. We compare these results to GWAS results obtained using a macro-level classification of observable hair curvature performed in the same sample of twins and siblings of European descent. Observational data were collected by trained observers, while quantitative data were acquired using an Optical Fibre Diameter Analyser (OFDA). The GWAS for both the observational and quantitative measures of hair curvature resulted in genome-wide significant signals at chromosome 1q21.3 close to the trichohyalin (TCHH) gene, previously shown to harbor variants associated with straight hair morphology in Europeans. All genetic variants reaching genome-wide significance for both GWAS (quantitative measure lead single-nucleotide polymorphism [SNP] rs12130862, p = 9.5 × 10-09; observational measure lead SNP rs11803731, p = 2.1 × 10-17) were in moderate to very high linkage disequilibrium (LD) with each other (minimum r2 = .45), indicating they represent the same genetic locus. Conditional analyses confirmed the presence of only one signal associated with each measure at this locus. Results from the quantitative measures reconfirmed the accuracy of observational measures
Sex-limited genome-wide linkage scan for body mass index in an unselected sample of 933 Australian twin families
Genes involved in pathways regulating body weight may operate differently in men and women. To determine whether sex-limited genes influence the obesity-related phenotype body mass index (BMI), we have conducted a general non-scalar sex-limited genome-wide linkage scan using variance components analysis in Mx (Neale, 2002). BMI measurements and genotypic data were available for 2053 Australian female and male adult twins and their siblings from 933 families. Clinical measures of BMI were available for 64.4% of these individuals, while only self-reported measures were available for the remaining participants. The mean age of participants was 39.0 years of age (SD 12.1 years). The use of a sex-limited linkage model identified areas on the genome where quantitative trait loci (QTL) effects differ between the sexes, particularly on chromosome 8 and 20, providing us with evidence that some of the genes responsible for BMI may have different effects in men and women. Our highest linkage peak was observed at 12q24 (-logp = 3.02), which was near the recommended threshold for suggestive linkage (-logp = 3.13). Previous studies have found evidence for a quantitative trait locus on 12q24 affecting BMI in a wide range of populations, and candidate genes for non-insulin-dependent diabetes mellitus, a consequence of obesity, have also been mapped to this region. We also identified many peaks near a -log p of 2 (threshold for replicating an existing finding) in many areas across the genome that are within regions previously identified by other studies, as well as in locations that harbor genes known to influence weight regulation
High loading of polygenic risk for ADHD in children with comorbid aggression
Objective: Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder.
Method: Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression.
Results: Polygenic risk for ADD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by,the aggression items.
Conclusions: Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity
A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features
We report a genome-wide association scan in over 6,000 Latin Americans for features of scalp hair (shape, colour, greying, balding) and facial hair (beard thickness, monobrow, eyebrow thickness). We found 18 signals of association reaching genome-wide significance (P values 5 × 10−8 to 3 × 10−119), including 10 novel associations. These include novel loci for scalp hair shape and balding, and the first reported loci for hair greying, monobrow, eyebrow and beard thickness. A newly identified locus influencing hair shape includes a Q30R substitution in the Protease Serine S1 family member 53 (PRSS53). We demonstrate that this enzyme is highly expressed in the hair follicle, especially the inner root sheath, and that the Q30R substitution affects enzyme processing and secretion. The genome regions associated with hair features are enriched for signals of selection, consistent with proposals regarding the evolution of human hair
Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders
Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations
Large-scale collaboration in ENIGMA-EEG: A perspective on the meta-analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity
BACKGROUND AND PURPOSE: The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. METHODS: We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. RESULTS: We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. CONCLUSION: The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability
MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS
The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly with that of the standard univariate approach. We introduce a new method and software, MultiPhen, that models multiple phenotypes simultaneously in a fast and interpretable way. By performing ordinal regression, MultiPhen tests the linear combination of phenotypes most associated with the genotypes at each SNP, and thus potentially captures effects hidden to single phenotype GWAS. We demonstrate via simulation that this approach provides a dramatic increase in power in many scenarios. There is a boost in power for variants that affect multiple phenotypes and for those that affect only one phenotype. While other multivariate methods have similar power gains, we describe several benefits of MultiPhen over these. In particular, we demonstrate that other multivariate methods that assume the genotypes are normally distributed, such as canonical correlation analysis (CCA) and MANOVA, can have highly inflated type-1 error rates when testing case-control or non-normal continuous phenotypes, while MultiPhen produces no such inflation. To test the performance of MultiPhen on real data we applied it to lipid traits in the Northern Finland Birth Cohort 1966 (NFBC1966). In these data MultiPhen discovers 21% more independent SNPs with known associations than the standard univariate GWAS approach, while applying MultiPhen in addition to the standard approach provides 37% increased discovery. The most associated linear combinations of the lipids estimated by MultiPhen at the leading SNPs accurately reflect the Friedewald Formula, suggesting that MultiPhen could be used to refine the definition of existing phenotypes or uncover novel heritable phenotypes
Evidence of Differential Allelic Effects between Adolescents and Adults for Plasma High-Density Lipoprotein
A recent meta-analysis of genome-wide association (GWA) studies identified 95 loci that influence lipid traits in the adult population and found that collectively these explained about 25–30% of heritability for each trait. Little is known about how these loci affect lipid levels in early life, but there is evidence that genetic effects on HDL- and LDL-cholesterol (HDL-C, LDL-C) and triglycerides vary with age. We studied Australian adults (N = 10,151) and adolescents (N = 2,363) who participated in twin and family studies and for whom we have lipid phenotypes and genotype information for 91 of the 95 genetic variants. Heterogeneity tests between effect sizes in adult and adolescent cohorts showed an excess of heterogeneity for HDL-C (pHet<0.05 at 5 out of 37 loci), but no more than expected by chance for LDL-C (1 out of 14 loci), or trigycerides (0 out 24). There were 2 (out of 5) with opposite direction of effect in adolescents compared to adults for HDL-C, but none for LDL-C. The biggest difference in effect size was for LDL-C at rs6511720 near LDLR, adolescents (0.021±0.033 mmol/L) and adults (0.157±0.023 mmol/L), pHet = 0.013; followed by ZNF664 (pHet = 0.018) and PABPC4 (pHet = 0.034) for HDL-C. Our findings suggest that some of the previously identified variants associate differently with lipid traits in adolescents compared to adults, either because of developmental changes or because of greater interactions with environmental differences in adults
- …