2 research outputs found

    Small-Scale Communities Are Sufficient for Cost- and Data-Efficient Peer-to-Peer Energy Sharing

    Get PDF
    Due to ever lower cost, investments in renewable electricity generation and storage have become more attractive to electricity consumers in recent years. At the same time, electricity generation and storage have become something to share or trade locally in energy communities or microgrid systems. In this context, peer-to-peer (P2P) sharing has gained attention, since it offers a way to optimize the cost-benefits from distributed resources, making them financially more attractive. However, it is not yet clear in which situations consumers do have interests to team up and how much cost is saved through cooperation in practical instances. While introducing realistic continuous decisions, through detailed analysis based on large-scale measured household data, we show that the financial benefit of cooperation does not require an accurate forecasting. Furthermore, we provide strong evidence, based on analysis of the same data, that even P2P networks with only 2--5 participants can reach a high fraction (96% in our study) of the potential gain, i.e., of the ideal offline (i.e., non-continuous) achievable gain. Maintaining such small communities results in much lower associated costs and better privacy, as each participant only needs to share its data with 1--4 other peers. These findings shed new light and motivate requirements for distributed, continuous and dynamic P2P matching algorithms for energy trading and sharing
    corecore