193 research outputs found

    Chemical Cues Influence Pupation Behavior of Drosophila simulans and Drosophila buzzatii in Nature and in the Laboratory

    Get PDF
    In the wild, larvae of several species of Drosophila develop in heterogeneous and rapidly changing environments sharing resources as food and space. In this scenario, sensory systems contribute to detect, localize and recognize congeners and heterospecifics, and provide information about the availability of food and chemical features of environments where animals live. We investigated the behavior of D. simulans and D. buzzatii larvae to chemicals emitted by conspecific and heterospecific larvae. Our goal was to understand the role of these substances in the selection of pupation sites in the two species that cohabit within decaying prickly pear fruits (Opuntia ficus-indica). In these breeding sites, larvae of D. simulans and D. buzzatii detect larvae of the other species changing their pupation site preferences. Larvae of the two species pupated in the part of the fruit containing no or few heterospecifics, and spent a longer time in/on spots marked by conspecifics rather than heterospecifics. In contrast, larvae of the two species reared in isolation from conspecifics pupated randomly over the substrate and spent a similar amount of time on spots marked by conspecifics and by heterospecifics. Our results indicate that early chemically-based experience with conspecific larvae is critical for the selection of the pupation sites in D. simulans and D. buzzatii, and that pupation site preferences of Drosophila larvae depend on species-specific chemical cues. These preferences can be modulate by the presence of larvae of the same or another species

    Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities

    Get PDF
    We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton bunch. The modulation extends over the length of the proton bunch following the seed point. By varying the plasma density over one order of magnitude, we show that the modulation frequency scales with the expected dependence on the plasma density, i.e., it is equal to the plasma frequency, as expected from theory

    Albumin and mammalian cell culture: implications for biotechnology applications

    Get PDF
    Albumin has a long historical involvement in design of media for the successful culture of mammalian cells, in both the research and commercial fields. The potential application of albumins, bovine or human serum albumin, for cell culture is a by-product of the physico-chemical, biochemical and cell-specific properties of the molecule. In this review an analysis of these features of albumin leads to a consideration of the extracellular and intracellular actions of the molecule, and importantly the role of its interactions with numerous ligands or bioactive factors that influence the growth of cells in culture: these include hormones, growth factors, lipids, amino acids, metal ions, reactive oxygen and nitrogen species to name a few. The interaction of albumin with the cell in relation to these co-factors has a potential impact on metabolic and biosynthetic activity, cell proliferation and survival. Application of this knowledge to improve the performance in manufacturing biotechnology and in the emerging uses of cell culture for tissue engineering and stem cell derived therapies is an important prospect

    Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients

    Get PDF
    We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.264801]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement

    Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch

    Get PDF
    We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1 x 10(14) and 7.7 x 10(14) electrons/cm(3). We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (< 15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels

    Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch

    Get PDF
    Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron injection delay scan
    corecore