9 research outputs found
First record and massive range extension of Hyalinobatrachium cappellei (Van Lidth de Jeude, 1904) (Anura, Centrolenidae) in Colombia
We report the first record of the Banded-limb Glassfrog, Hyalinobatrachium cappellei (Van Lidth de Jeude, 1904), in Colombia based on 2 specimens, 1 each from the municipalities of Cartagena del Chairá and Solano, department of Caquetá. The present record represents an additional amphibian species for the country, bringing the known total to 821 species and represents a massive range extension of 1,077 km southwest of the nearest known locality for H. cappellei in Venezuela.&nbsp
Extinction filters mediate the global effects of habitat fragmentation on animals
Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivityâaffected by avoidance of habitat edgesâshould be driven by historical exposure to, and therefore speciesâ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the worldâs tropical forests
BIOFRAG: A new database for analysing BIOdiversity responses to forest FRAGmentation
Habitat fragmentation studies are producing inconsistent and complex results across which it is nearly impossible to synthesise. Consistent analytical techniques can be applied to primary datasets, if stored in a flexible database that allows simple data retrieval for subsequent analyses. Method: We developed a relational database linking data collected in the field to taxonomic nomenclature, spatial and temporal plot attributes and further environmental variables (e.g. information on biogeographic region. Typical field assessments include measures of biological variables (e.g. presence, abundance, ground cover) of one species or a set of species linked to a set of plots in fragments of a forested landscape. Conclusion: The database currently holds records of 5792 unique species sampled in 52 landscapes in six of eight biogeographic regions: mammals 173, birds 1101, herpetofauna 284, insects 2317, other arthropods: 48, plants 1804, snails 65. Most species are found in one or two landscapes, but some are found in four. Using the huge amount of primary data on biodiversity response to fragmentation becomes increasingly important as anthropogenic pressures from high population growth and land demands are increasing. This database can be queried to extract data for subsequent analyses of the biological response to forest fragmentation with new metrics that can integrate across the components of fragmented landscapes. Meta-analyses of findings based on consistent methods and metrics will be able to generalise over studies allowing inter-comparisons for unified answers. The database can thus help researchers in providing findings for analyses of trade-offs between land use benefits and impacts on biodiversity and to track performance of management for biodiversity conservation in human-modified landscapes.Fil: Pfeifer, Marion. Imperial College London; Reino UnidoFil: Lefebvre, Veronique. Imperial College London; Reino UnidoFil: Gardner, Toby A.. Stockholm Environment Institute; SueciaFil: Arroyo RodrĂguez, VĂctor. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Baeten, Lander. University of Ghent; BĂ©lgicaFil: Banks Leite, Cristina. Imperial College London; Reino UnidoFil: Barlow, Jos. Lancaster University; Reino UnidoFil: Betts, Matthew G.. State University of Oregon; Estados UnidosFil: Brunet, Joerg. Swedish University of Agricultural Sciences; SueciaFil: Cerezo BlandĂłn, Alexis Mauricio. Universidad de Buenos Aires. Facultad de AgronomĂa. Departamento de MĂ©todos Cuantitativos y Sistemas de InformaciĂłn; ArgentinaFil: Cisneros, Laura M.. University of Connecticut; Estados UnidosFil: Collard, Stuart. Nature Conservation Society of South Australia; AustraliaFil: DÂŽCruze, Neil. The World Society for the Protection of Animals; Reino UnidoFil: Da Silva Motta, Catarina. MinistĂ©rio da CiĂȘncia, Tecnologia, InovaçÔes. Instituto Nacional de Pesquisas da AmazĂŽnia; BrasilFil: Duguay, Stephanie. Carleton University; CanadĂĄFil: Eggermont, Hilde. University of Ghent; BĂ©lgicaFil: Eigenbrod, FĂ©lix. University of Southampton; Reino UnidoFil: Hadley, Adam S.. State University of Oregon; Estados UnidosFil: Hanson, Thor R.. No especifĂca;Fil: Hawes, Joseph E.. University of East Anglia; Reino UnidoFil: Heartsill Scalley, Tamara. United State Department of Agriculture. Forestry Service; Puerto RicoFil: Klingbeil, Brian T.. University of Connecticut; Estados UnidosFil: Kolb, Annette. Universitat Bremen; AlemaniaFil: Kormann, Urs. UniversitĂ€t Göttingen; AlemaniaFil: Kumar, Sunil. State University of Colorado - Fort Collins; Estados UnidosFil: Lachat, Thibault. Swiss Federal Institute for Forest; SuizaFil: Lakeman Fraser, Poppy. Imperial College London; Reino UnidoFil: Lantschner, MarĂa Victoria. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - BahĂa Blanca; Argentina. Instituto Nacional de TecnologĂa Agropecuaria. Centro Regional Patagonia Norte. EstaciĂłn Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Laurance, William F.. James Cook University; AustraliaFil: Leal, Inara R.. Universidade Federal de Pernambuco; BrasilFil: Lens, Luc. University of Ghent; BĂ©lgicaFil: Marsh, Charles J.. University of Leeds; Reino UnidoFil: Medina Rangel, Guido F.. Universidad Nacional de Colombia; ColombiaFil: Melles, Stephanie. University of Toronto; CanadĂĄFil: Mezger, Dirk. Field Museum of Natural History; Estados UnidosFil: Oldekop, Johan A.. University of Sheffield; Reino UnidoFil: Overal , Williams L.. Museu Paraense EmĂlio Goeldi. Departamento de Entomologia; BrasilFil: Owen, Charlotte. Imperial College London; Reino UnidoFil: Peres, Carlos A.. University of East Anglia; Reino UnidoFil: Phalan, Ben. University of Southampton; Reino UnidoFil: Pidgeon, Anna Michle. University of Wisconsin; Estados UnidosFil: Pilia, Oriana. Imperial College London; Reino UnidoFil: Possingham, Hugh P.. Imperial College London; Reino Unido. The University Of Queensland; AustraliaFil: Possingham, Max L.. No especifĂca;Fil: Raheem, Dinarzarde C.. Royal Belgian Institute of Natural Sciences; BĂ©lgica. Natural History Museum; Reino UnidoFil: Ribeiro, Danilo B.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Ribeiro Neto, Jose D.. Universidade Federal de Pernambuco; BrasilFil: Robinson, Douglas W.. State University of Oregon; Estados UnidosFil: Robinson, Richard. Manjimup Research Centre; AustraliaFil: Rytwinski, Trina. Carleton University; CanadĂĄFil: Scherber, Christoph. UniversitĂ€t Göttingen; AlemaniaFil: Slade, Eleanor M.. University of Oxford; Reino UnidoFil: Somarriba, Eduardo. Centro AgronĂłmico Tropical de InvestigaciĂłn y Enseñanza; Costa RicaFil: Stouffer, Philip C.. State University of Louisiana; Estados UnidosFil: Struebig, Matthew J.. University of Kent; Reino UnidoFil: Tylianakis, Jason M.. University College London; Estados Unidos. Imperial College London; Reino UnidoFil: Teja, Tscharntke. UniversitĂ€t Göttingen; AlemaniaFil: Tyre, Andrew J.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Urbina Cardona, Jose N.. Pontificia Universidad Javeriana; ColombiaFil: Vasconcelos, Heraldo L.. Universidade Federal de Uberlandia; BrasilFil: Wearn, Oliver. Imperial College London; Reino Unido. The Zoological Society of London; Reino UnidoFil: Wells, Konstans. University of Adelaide; AustraliaFil: Willig, Michael R.. University of Connecticut; Estados UnidosFil: Wood, Eric. University of Wisconsin; Estados UnidosFil: Young, Richard P.. Durrell Wildlife Conservation Trust; Reino UnidoFil: Bradley, Andrew V.. Imperial College London; Reino UnidoFil: Ewers, Robert M.. Imperial College London; Reino Unid
Update on the Combined Analysis of Muon Measurements from Nine Air Shower Experiments
Over the last two decades, various experiments have measured muon densities in extensive air showers over several orders of magnitude in primary energy. While some experiments observed differences in the muon densities between simulated and experimentally measured air showers, others reported no discrepancies. We will present an update of the meta-analysis of muon measurements from nine air shower experiments, covering shower energies between a few PeV and tens of EeV and muon threshold energies from a few 100 MeV to about 10GeV. In order to compare measurements from different experiments, their energy scale was cross-calibrated and the experimental data has been compared using a universal reference scale based on air shower simulations. Above 10 PeV, we find a muon excess with respect to simulations for all hadronic interaction models, which is increasing with shower energy. For EPOS-LHC and QGSJet-II.04 the significance of the slope of the increase is analyzed in detail under different assumptions of the individual experimental uncertainties
Recommended from our members
BIOFRAG â a new database for analyzing BIOdiversity responses to forest FRAGmentation
Habitat fragmentation studies have produced complex results that are challenging
to synthesize. Inconsistencies among studies may result from variation in
the choice of landscape metrics and response variables, which is often compounded
by a lack of key statistical or methodological information. Collating
primary datasets on biodiversity responses to fragmentation in a consistent and
flexible database permits simple data retrieval for subsequent analyses. We present
a relational database that links such field data to taxonomic nomenclature,
spatial and temporal plot attributes, and environmental characteristics. Field
assessments include measurements of the response(s) (e.g., presence, abundance,
ground cover) of one or more species linked to plots in fragments
within a partially forested landscape. The database currently holds 9830 unique
species recorded in plots of 58 unique landscapes in six of eight realms: mammals
315, birds 1286, herptiles 460, insects 4521, spiders 204, other arthropods
85, gastropods 70, annelids 8, platyhelminthes 4, Onychophora 2, vascular
plants 2112, nonvascular plants and lichens 320, and fungi 449. Three landscapes
were sampled as long-term time series (>10 years). Seven hundred and
eleven species are found in two or more landscapes. Consolidating the substantial
amount of primary data available on biodiversity responses to fragmentation
in the context of land-use change and natural disturbances is an essential
part of understanding the effects of increasing anthropogenic pressures on land.
The consistent format of this database facilitates testing of generalizations concerning
biologic responses to fragmentation across diverse systems and taxa. It
also allows the re-examination of existing datasets with alternative landscape
metrics and robust statistical methods, for example, helping to address pseudo-replication
problems. The database can thus help researchers in producing
broad syntheses of the effects of land use. The database is dynamic and inclusive,
and contributions from individual and large-scale data-collection efforts
are welcome.Keywords: Species turnover,
Data sharing,
Database,
Global change,
Landscape metrics,
Edge effects,
Forest fragmentation,
Matrix contrast,
Bioinformatic
The complete mitogenome of the invasive Japanese mud snail Batillaria attramentaria (Gastropoda: Batillariidae) from Elkhorn Slough, California, USA
Genomic analysis of the invasive marine snail Batillaria attramentaria from Elkhorn Slough, Moss Landing, California, USA using 150âbp paired-end Illumina sequences resulted in the assembly of its complete mitogenome. The mitogenome is 16,095âbp in length and contains 2 rRNA, 13 protein-coding, and 22 tRNA genes (GenBank Accession MN557850). Gene content and organization of B. attramentaria are identical to the Turritellidae and Pachychilidae. The phylogenetic analysis of B. attramentaria resolves it in a fully supported clade with these same two families in the superfamily Cerithioidea. Nucleotide BLAST searches of the Elkhorn Slough cox1 gene of B. attramentaria yielded identical sequences from invasive populations from California and British Columbia, and native populations from northeastern and central Japan. These data show that mitogenome sequencing is a useful tool for studying the classification and phylogenetic history Cerithioidea
Ongoing harlequin toad declines suggest the amphibian extinction crisis is still an emergency
Biodiversity loss is extreme in amphibians. Despite ongoing conservation action, it is difficult to determine where we stand in overcoming their extinction crisis. Among the most threatened amphibians are the 131 Neotropical harlequin toads. Many of them declined since the 1980s with several considered possibly extinct. Recently, more than 30 species have been rediscovered, raising hope for a reversing trend in the amphibian extinction crisis. We use past and present data available for harlequin toads (Atelopus), to examine whether the amphibian extinction crisis is still in an emergency state. Since 2004 no species has improved its population status, suggesting that recovery efforts have not been successful. Threats include habitat change, pathogen spread and climate change. More mitigation strategies need implementation, especially habitat protection and disease management, combined with captive conservation breeding. With harlequin toads serving as a model, it is clear that the amphibian extinction crisis is still underway.
The status of the harlequin toads has not improved since 2004 despite species rediscoveries accompanied by increasing conservation efforts, and habitat destruction and degradation continue to threaten them today, according to an analysis of population status records over the period 2004-2022
Ongoing declines for the worldâs amphibians in the face of emerging threats
Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends