2 research outputs found

    Effects of Antioxidant Supplements on the Survival and Differentiation of Stem Cells

    Get PDF
    Although physiological levels of reactive oxygen species (ROS) are required to maintain the self-renewal capacity of stem cells, elevated ROS levels can induce chromosomal aberrations, mitochondrial DNA damage, and defective stem cell differentiation. Over the past decade, several studies have shown that antioxidants can not only mitigate oxidative stress and improve stem cell survival but also affect the potency and differentiation of these cells. Further beneficial effects of antioxidants include increasing genomic stability, improving the adhesion of stem cells to culture media, and enabling researchers to manipulate stem cell proliferation by using different doses of antioxidants. These findings can have several clinical implications, such as improving neurogenesis in patients with stroke and neurodegenerative diseases, as well as improving the regeneration of infarcted myocardial tissue and the banking of spermatogonial stem cells. This article reviews the cellular and molecular effects of antioxidant supplementation to cultured or transplanted stem cells and draws up recommendations for further research in this area

    Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity

    No full text
    Adipokines are bioactive molecules that regulate several physiological functions such as energy balance, insulin sensitization, appetite regulation, inflammatory response, and vascular homeostasis. They include proinflammatory cytokines such as adipocyte fatty acid binding protein (A-FABP) and anti-inflammatory cytokines such as adiponectin, as well as vasodilator and vasoconstrictor molecules. In obesity and type II diabetes mellitus (DM), insulin resistance causes impairment of the endocrine function of the perivascular adipose tissue, an imbalance in the secretion of vasoconstrictor and vasodilator molecules, and an increased production of reactive oxygen species. Recent studies have shown that targeting plasma levels of adipokines or the expression of their receptors can increase insulin sensitivity, improve vascular function, and reduce the risk of cardiovascular morbidity and mortality. Several reviews have discussed the potential of adipokines as therapeutic targets for type II DM and obesity; however, this review is the first to focus on their therapeutic potential for vascular dysfunction in type II DM and obesity
    corecore