21 research outputs found

    Photodocumentation and Image Analysis

    No full text

    Dynamics of aggregate stability and biological binding agents during decomposition of organic materials

    Full text link
    The relative importance of different binding mechanisms and associated biological binding agents on aggregate stability is still unclear. The aim of this study was to evaluate the role of various aggregate binding agents during the decomposition of cauliflower residues, wheat straw, cattle manure and poultry woody compost. We measured aggregate stability, hot-water extractable polysaccharide, C mineralization, fungal and microbial biomass dynamics in an amended silt loam soil, under controlled conditions. Soil aggregate stability was measured using three methods involving fast wetting, slow wetting and mechanical breakdown. Aggregate stability to slow wetting followed the same dynamics as C mineralization and was well correlated with polysaccharide content for cauliflower residues and wheat straw. This relationship is in agreement with the hypothesis that the rapid microbially induced improvement in aggregate stability that follows fresh organic residue additions at least partly involves labile polysaccharides. The transient increase in the two other types of stability was not directly related to C mineralization dynamics and seemed to be influenced by fungal hyphal length. Fungi would provide resistance to mechanical breakdown and slaking. The dynamic behaviour of biological binding agents was only partly explained by the initial quality of the organic materials, as characterized by Van Soest proximal fractionation

    Maternal condition influences phenotypic selection on offspring

    No full text
    1. Environmentally induced maternal effects are known to affect offspring phenotype, and as a result, the dynamics and evolution of populations across a wide range of taxa.\ud \ud 2. In a field experiment, we manipulated maternal condition by altering food availability, a key factor influencing maternal energy allocation to offspring. We then examined how maternal condition at the time of gametogenesis affects the relationships among early life-history traits and survivorship during early development of the coral reef fish Pomacentrus amboinensis.\ud \ud 3. Maternal condition did not affect the number of embryos that hatched or the number of hatchlings surviving to a set time.\ud \ud 4. We found no significant difference in egg size in relation to the maternal physiological state. However, eggs spawned by supplemented mothers were provisioned with greater energy reserves (yolk-sac and oil globule size) than nonsupplemented counterparts, suggesting that provision of energy reserves rather than egg size more closely reflected the maternal environment.\ud \ud 5. Among offspring originating from supplemented mothers, those with larger yolk-sacs were more likely to successfully hatch and survive for longer periods after hatching. However, among offspring from nonsupplemented mothers, yolk-sac size was either inconsequential to survival or offspring with smaller yolk-sac sizes were favoured. Mothers appear to influence the physiological capacity of their progeny and in turn the efficiency of individual offspring to utilize endogenous reserves.\ud \ud 6. In summary, our results show that the maternal environment influences the relationship between offspring characteristics and survival and suggest that energy-driven selective mechanisms may operate to determine progeny viability
    corecore