5 research outputs found

    Worldwide human mitochondrial haplogroup distribution from urban sewage

    Get PDF
    Community level genetic information can be essential to direct health measures and study demographic tendencies but is subject to considerable ethical and legal challenges. These concerns become less pronounced when analyzing urban sewage samples, which are ab ovo anonymous by their pooled nature. We were able to detect traces of the human mitochondrial DNA (mtDNA) in urban sewage samples and to estimate the distribution of human mtDNA haplogroups. An expectation maximization approach was used to determine mtDNA haplogroup mixture proportions for samples collected at each different geographic location. Our results show reasona

    Patterns of Somatic Variants in Colorectal Adenoma and Carcinoma Tissue and Matched Plasma Samples from the Hungarian Oncogenome Program

    Full text link
    Analysis of circulating cell-free DNA (cfDNA) of colorectal adenoma (AD) and cancer (CRC) patients provides a minimally invasive approach that is able to explore genetic alterations. It is unknown whether there are specific genetic variants that could explain the high prevalence of CRC in Hungary. Whole-exome sequencing (WES) was performed on colon tissues (27 AD, 51 CRC) and matched cfDNAs (17 AD, 33 CRC); furthermore, targeted panel sequencing was performed on a subset of cfDNA samples. The most frequently mutated genes were APC, KRAS, and FBN3 in AD, while APC, TP53, TTN, and KRAS were the most frequently mutated in CRC tissue. Variants in KRAS codons 12 (AD: 8/27, CRC: 11/51 (0.216)) and 13 (CRC: 3/51 (0.06)) were the most frequent in our sample set, with G12V (5/27) dominance in ADs and G12D (5/51 (0.098)) in CRCs. In terms of the cfDNA WES results, tumor somatic variants were found in 6/33 of CRC cases. Panel sequencing revealed somatic variants in 8 out of the 12 enrolled patients, identifying 12/20 tumor somatic variants falling on its targeted regions, while WES recovered only 20% in the respective regions in cfDNA of the same patients. In liquid biopsy analyses, WES is less efficient compared to the targeted panel sequencing with a higher coverage depth that can hold a relevant clinical potential to be applied in everyday practice in the future

    Patterns of Somatic Variants in Colorectal Adenoma and Carcinoma Tissue and Matched Plasma Samples from the Hungarian Oncogenome Program

    Full text link
    Analysis of circulating cell-free DNA (cfDNA) of colorectal adenoma (AD) and cancer (CRC) patients provides a minimally invasive approach that is able to explore genetic alterations. It is unknown whether there are specific genetic variants that could explain the high prevalence of CRC in Hungary. Whole-exome sequencing (WES) was performed on colon tissues (27 AD, 51 CRC) and matched cfDNAs (17 AD, 33 CRC); furthermore, targeted panel sequencing was performed on a subset of cfDNA samples. The most frequently mutated genes were APC, KRAS, and FBN3 in AD, while APC, TP53, TTN, and KRAS were the most frequently mutated in CRC tissue. Variants in KRAS codons 12 (AD: 8/27, CRC: 11/51 (0.216)) and 13 (CRC: 3/51 (0.06)) were the most frequent in our sample set, with G12V (5/27) dominance in ADs and G12D (5/51 (0.098)) in CRCs. In terms of the cfDNA WES results, tumor somatic variants were found in 6/33 of CRC cases. Panel sequencing revealed somatic variants in 8 out of the 12 enrolled patients, identifying 12/20 tumor somatic variants falling on its targeted regions, while WES recovered only 20% in the respective regions in cfDNA of the same patients. In liquid biopsy analyses, WES is less efficient compared to the targeted panel sequencing with a higher coverage depth that can hold a relevant clinical potential to be applied in everyday practice in the future

    S-Adenosylmethionine Treatment of Colorectal Cancer Cell Lines Alters DNA Methylation, DNA Repair and Tumor Progression-Related Gene Expression

    Full text link
    Global DNA hypomethylation is a characteristic feature of colorectal carcinoma (CRC). The tumor inhibitory effect of S-adenosylmethionine (SAM) methyl donor has been described in certain cancers including CRC. However, the molecular impact of SAM treatment on CRC cell lines with distinct genetic features has not been evaluated comprehensively. HT-29 and SW480 cells were treated with 0.5 and 1 mmol/L SAM for 48 h followed by cell proliferation measurements, whole-genome transcriptome and methylome analyses, DNA stability assessments and exome sequencing. SAM reduced cell number and increased senescence by causing S phase arrest, besides, multiple EMT-related genes (e.g., TGFB1) were downregulated in both cell lines. Alteration in the global DNA methylation level was not observed, but certain methylation changes in gene promoters were detected. SAM-induced γ-H2AX elevation could be associated with activated DNA repair pathway showing upregulated gene expression (e.g., HUS1). Remarkable genomic stability elevation, namely, decreased micronucleus number and comet tail length was observed only in SW480 after treatment. SAM has the potential to induce senescence, DNA repair, genome stability and to reduce CRC progression. However, the different therapeutic responses of HT-29 and SW480 to SAM emphasize the importance of the molecular characterization of CRC cases prior to methyl donor supplementation
    corecore