4 research outputs found

    Interconnectivity between molecular subtypes and tumor stage in colorectal cancer

    Get PDF
    BACKGROUND: There are profound individual differences in clinical outcomes between colorectal cancers (CRCs) presenting with identical stage of disease. Molecular stratification, in conjunction with the traditional TNM staging, is a promising way to predict patient outcomes. We investigated the interconnectivity between tumor stage and tumor biology reflected by the Consensus Molecular Subtypes (CMSs) in CRC, and explored the possible value of these insights in patients with stage II colon cancer. METHODS: We performed a retrospective analysis using clinical records and gene expression profiling in a meta-cohort of 1040 CRC patients. The interconnectivity of tumor biology and disease stage was assessed by investigating the association between CMSs and TNM classification. In order to validate the clinical applicability of our findings we employed a meta-cohort of 197 stage II colon cancers. RESULTS: CMS4 was significantly more prevalent in advanced stages of disease (stage I 9.8% versus stage IV 38.5%, p < 0.001). The observed differential gene expression between cancer stages is at least partly explained by the biological differences as reflected by CMS subtypes. Gene signatures for stage III-IV and CMS4 were highly correlated (r = 0.77, p < 0.001). CMS4 cancers showed an increased progression rate to more advanced stages (CMS4 compared to CMS2: 1.25, 95% CI: 1.08-1.46). Patients with a CMS4 cancer had worse survival in the high-risk stage II tumors compared to the total stage II cohort (5-year DFS 41.7% versus 100.0%, p = 0.008). CONCLUSIONS: Considerable interconnectivity between tumor biology and tumor stage in CRC exists. This implies that the TNM stage, in addition to the stage of progression, might also reflect distinct biological disease entities. These insights can potentially be utilized to optimize identification of high-risk stage II colo

    Modeling Personalized Adjuvant TreaTment in EaRly stage coloN cancer (PATTERN)

    Get PDF
    Aim: To develop a decision model for the population-level evaluation of strategies to improve the selection of stage II colon cancer (CC) patients who benefit from adjuvant chemotherapy. Methods: A Markov cohort model with a one-month cycle length and a lifelong time horizon was developed. Five health states were included; diagnosis, 90-day mortality, death other causes, recurrence and CC death. Data from the Netherlands Cancer Registry were used to parameterize the model. Transition probabilities were estimated using parametric survival models including relevant clinical and pathological covariates. Subsequently, biomarker status was implemented using external data. Treatment effect was incorporated using pooled trial data. Model development, data sources used, parameter estimation, and internal and external validation are described in detail. To illustrate the use of the model, three example strategies were evaluated in which allocation of treatment was based on (A) 100% adherence to the Dutch guidelines, (B) observed adherence to guideline recommendations and (C) a biomarker-driven strategy. Results: Overall, the model showed good internal and external validity. Age, tumor growth, tumor sidedness, evaluated lymph nodes, and biomarker status were included as covariates. For the example strategies, the model predicted 83, 87 and 77 CC deaths after 5 years in a cohort of 1000 patients for strategies A, B and C, respectively. Conclusion: This model can be used to evaluate strategies for the allocation of adjuvant chemotherapy in stage II CC patients. In future studies, the model will be used to estimate population-level long-term health gain and cost-effectiveness of biomarker-based selection strategies

    Chromatin mobility is increased at sites of DNA double-strand breaks

    No full text
    DNA double-strand breaks (DSBs) can efficiently kill cancer cells, but they can also produce unwanted chromosome rearrangements when DNA ends from different DSBs are erroneously joined. Movement of DSB-containing chromatin domains might facilitate these DSB interactions and promote the formation of chromosome rearrangements. Therefore, we analyzed the mobility of chromatin domains containing DSBs, marked by the fluorescently tagged DSB marker 53BP1, in living mammalian cells and compared it with the mobility of undamaged chromatin on a time-scale relevant for DSB repair. We found that chromatin domains containing DSBs are substantially more mobile than intact chromatin, and are capable of roaming a more than twofold larger area of the cell nucleus. Moreover, this increased DSB mobility, but not the mobility of undamaged chromatin, can be reduced by agents that affect higher-order chromatin organization

    Improving clinical management of colon cancer through CONNECTION, a nation-wide colon cancer registry and stratification effort (CONNECTION II trial): rationale and protocol of a single arm intervention study

    Get PDF
    BACKGROUND: It is estimated that around 15-30% of patients with early stage colon cancer benefit from adjuvant chemotherapy. We are currently not capable of upfront selection of patients who benefit from chemotherapy, which indicates the need for additional predictive markers for response to chemotherapy. It has been shown that the consensus molecular subtypes (CMSs), defined by RNA-profiling, have prognostic and/or predictive value. Due to postoperative timing of chemotherapy in current guidelines, tumor response to chemotherapy per CMS is not known, which makes the differentiation between the prognostic and predictive value impossible. Therefore, we propose to assess the tumor response per CMS in the neoadjuvant chemotherapy setting. This will provide us with clear data on the predictive value for chemotherapy response of the CMSs. METHODS: In this prospective, single arm, multicenter intervention study, 262 patients with resectable microsatellite stable cT3-4NxM0 colon cancer will be treated with two courses of neoadjuvant and two courses of adjuvant capecitabine and oxaliplatin. The primary endpoint is the pathological tumor response to neoadjuvant chemotherapy per CMS. Secondary endpoints are radiological tumor response, the prognostic value of these responses for recurrence free survival and overall survival and the differences in CMS classification of the same tumor before and after neoadjuvant chemotherapy. The study is scheduled to be performed in 8-10 Dutch hospitals.
    corecore