190 research outputs found
Ultraviolet Completion of Flavour Models
Effective Flavour Models do not address questions related to the nature of
the fundamental renormalisable theory at high energies. We study the
ultraviolet completion of Flavour Models, which in general has the advantage of
improving the predictivity of the effective models. In order to illustrate the
important features we provide minimal completions for two known A4 models. We
discuss the phenomenological implications of the explicit completions, such as
lepton flavour violating contributions that arise through the exchange of
messenger fields.Comment: 18 pages, 8 figure
Reactor mixing angle from hybrid neutrino masses
In terms of its eigenvector decomposition, the neutrino mass matrix (in the
basis where the charged lepton mass matrix is diagonal) can be understood as
originating from a tribimaximal dominant structure with small deviations, as
demanded by data. If neutrino masses originate from at least two different
mechanisms, referred to as "hybrid neutrino masses", the experimentally
observed structure naturally emerges provided one mechanism accounts for the
dominant tribimaximal structure while the other is responsible for the
deviations. We demonstrate the feasibility of this picture in a fairly
model-independent way by using lepton-number-violating effective operators,
whose structure we assume becomes dictated by an underlying flavor
symmetry. We show that if a second mechanism is at work, the requirement of
generating a reactor angle within its experimental range always fixes the solar
and atmospheric angles in agreement with data, in contrast to the case where
the deviations are induced by next-to-leading order effective operators. We
prove this idea is viable by constructing an -based ultraviolet
completion, where the dominant tribimaximal structure arises from the type-I
seesaw while the subleading contribution is determined by either type-II or
type-III seesaw driven by a non-trivial singlet (minimal hybrid model).
After finding general criteria, we identify all the symmetries
capable of producing such -based minimal hybrid models.Comment: 18 pages, 5 figures. v3: section including sum rules added, accepted
by JHE
Decaying Dark Matter in the Supersymmetric Standard Model with Freeze-in and Seesaw mechanims
Inspired by the decaying dark matter (DM) which can explain cosmic ray
anomalies naturally, we consider the supersymmetric Standard Model with three
right-handed neutrinos (RHNs) and R-parity, and introduce a TeV-scale DM sector
with two fields \phi_{1,2} and a discrete symmetry. The DM sector only
interacts with the RHNs via a very heavy field exchange and then we can explain
the cosmic ray anomalies. With the second right-handed neutrino N_2 dominant
seesaw mechanism at the low scale around 10^4 GeV, we show that \phi_{1,2} can
obtain the vacuum expectation values around the TeV scale, and then the
lightest state from \phi_{1,2} is the decay DM with lifetime around \sim
10^{26}s. In particular, the DM very long lifetime is related to the tiny
neutrino masses, and the dominant DM decay channels to \mu and \tau are related
to the approximate \mu-\tau symmetry. Furthermore, the correct DM relic density
can be obtained via the freeze-in mechanism, the small-scale problem for power
spectrum can be solved due to the decays of the R-parity odd meta-stable states
in the DM sector, and the baryon asymmetry can be generated via the soft
leptogensis.Comment: 24 pages,3 figure
An SO(10) Grand Unified Theory of Flavor
We present a supersymmetric SO(10) grand unified theory (GUT) of flavor based
on an family symmetry. It makes use of our recent proposal to use SO(10)
with type II seesaw mechanism for neutrino masses combined with a simple ansatz
that the dominant Yukawa matrix (the {\bf 10}-Higgs coupling to matter) has
rank one. In this paper, we show how the rank one model can arise within some
plausible assumptions as an effective field theory from vectorlike {\bf 16}
dimensional matter fields with masses above the GUT scale. In order to obtain
the desired fermion flavor texture we use flavon multiplets which acquire
vevs in the ground state of the theory. By supplementing the theory with
an additional discrete symmetry, we find that the flavon vacuum field
alignments take a discrete set of values provided some of the higher
dimensional couplings are small. Choosing a particular set of these vacuum
alignments appears to lead to an unified understanding of observed quark-lepton
flavor:
(i) the lepton mixing matrix that is dominantly tri-bi-maximal with small
corrections related to quark mixings; (ii) quark lepton mass relations at GUT
scale: and and (iii) the solar to
atmospheric neutrino mass ratio in agreement with observations. The model predicts the neutrino
mixing parameter, ,
which should be observable in planned long baseline experiments.Comment: Final version of the paper as it will appear in JHEP
Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models
Recent T2K results indicate a sizeable reactor angle theta_13 which would
rule out exact tri-bimaximal lepton mixing. We study the vacuum alignment of
the Altarelli-Feruglio A4 family symmetry model including additional flavons in
the 1' and 1" representations and show that it leads to trimaximal mixing in
which the second column of the lepton mixing matrix consists of the column
vector (1,1,1)^T/sqrt{3}, with a potentially large reactor angle. In order to
limit the reactor angle and control the higher order corrections, we propose a
renormalisable S4 model in which the 1' and 1" flavons of A4 are unified into a
doublet of S4 which is spontaneously broken to A4 by a flavon which enters the
neutrino sector at higher order. We study the vacuum alignment in the S4 model
and show that it predicts accurate trimaximal mixing with approximate
tri-bimaximal mixing, leading to a new mixing sum rule testable in future
neutrino experiments. Both A4 and S4 models preserve form dominance and hence
predict zero leptogenesis, up to renormalisation group corrections.Comment: 24 pages, 2 figures, version to be published in JHE
The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model
Both Grand Unified symmetries and discrete flavour symmetries are appealing
ways to describe apparent structures in the gauge and flavour sectors of the
Standard Model. Both symmetries put constraints on the high energy behaviour of
the theory. This can give rise to unexpected interplay when building models
that possess both symmetries. We investigate on the possibility to combine a
Pati-Salam model with the discrete flavour symmetry that gives rise to
quark-lepton complementarity. Under appropriate assumptions at the GUT scale,
the model reproduces fermion masses and mixings both in the quark and in the
lepton sectors. We show that in particular the Higgs sector and the running
Yukawa couplings are strongly affected by the combined constraints of the Grand
Unified and family symmetries. This in turn reduces the phenomenologically
viable parameter space, with high energy mass scales confined to a small region
and some parameters in the neutrino sector slightly unnatural. In the allowed
regions, we can reproduce the quark masses and the CKM matrix. In the lepton
sector, we reproduce the charged lepton masses, including bottom-tau
unification and the Georgi-Jarlskog relation as well as the two known angles of
the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse
hierarchy, and only allowing the neutrino parameters to spread into a range of
values between and , with .
Finally, our model suggests that the reactor mixing angle is close to its
current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for
publication in JHE
Generalised CP and Family Symmetry in Semi-Direct Models of Leptons
We perform a detailed analysis of family symmetry combined
with a generalised CP symmetry in the lepton sector, breaking to different
remnant symmetries in the neutrino and in the charged lepton
sector, together with different remnant CP symmetries in each sector. We
discuss the resulting mass and mixing predictions for with
and with . All cases correspond to
the preserved symmetry smaller than the full Klein symmetry, as in the
semi-direct approach, leading to predictions which depend on a single
undetermined real parameter, which mainly determines the reactor angle. We
focus on five phenomenologically allowed cases for which we present the
resulting predictions for the PMNS parameters as a function of , as well as
the predictions for neutrinoless double beta decay.Comment: 65 pages, 19 figures, and the predictions for neutrinoless double
beta decay are update
Effect of controlled and uncontrolled cooling rate on motility parameters of cryopreserved ram spermatozoa
<p>Abstract</p> <p>Background</p> <p>Ram spermatozoa are sensitive to extreme changes in temperature during the freeze-thaw process. The degree of damage depends on a combined effect of various factors including freezing temperature. The aim of this study was to determine the effects of two cooling method (controlled-rate and uncontrolled-rate) on pre-freezing and post-thaw sperm motility parameters.</p> <p>Results</p> <p>Ejaculates were collected using the artificial vagina from four Chal rams and three replicates of the ejaculates were diluted with a Tris-based extender and packed in 0.25 ml straws. Then, sample processed according to the two methods. Method 1: straws cooled from 37 to 5°C, at a liner rate of -0.3°C/min in a controlled-rate cooling machine (custom-built) and equilibrated at 5°C for 80 min, then the straws were frozen at rate of -0.3°C/min from 5°C to -10°C and -25°C/min from -10°C to -150°C and plunged into liquid nitrogen for storage. Method 2: straws were transferred to refrigerator and maintained at 5°C for 3 h, then the straws were frozen in liquid nitrogen vapor, 4 cm above the liquid nitrogen for 15 min and plunged into liquid nitrogen. Computer-assisted sperm motility analysis was used to analyze sperm motion characteristics.</p> <p>Conclusions</p> <p>Controlled rate of freezing (Method 1) significantly improve the pre-freezing and post-thaw total and progressive motility compared to uncontrolled rate (Method 2). In specific kinetic parameters, Method 1 gives significantly higher value for VSL and VCL in comparison with Method 2. There are no significant differences between the two methods for VAP and LIN. In conclusion, controlled rate of cooling conferred better cryopreserving ability to ram spermatozoa compared to uncontrolled rate of cooling prior to programmable freezing.</p
Spontaneous breaking of SU(3) to finite family symmetries: a pedestrian's approach
Non-Abelian discrete family symmetries play a pivotal role in the formulation
of models with tri-bimaximal lepton mixing. We discuss how to obtain symmetries
such as A4, semidirect product of Z7 and Z3, and Delta(27) from an underlying
SU(3) gauge symmetry. Higher irreducible representations are required to
achieve the spontaneous breaking of the continuous group. We present methods of
identifying the required vacuum alignments and discuss in detail the symmetry
breaking potentials.Comment: 21 page
- …