78 research outputs found

    Multiple and single snapshot compressive beamforming

    Full text link
    For a sound field observed on a sensor array, compressive sensing (CS) reconstructs the direction-of-arrival (DOA) of multiple sources using a sparsity constraint. The DOA estimation is posed as an underdetermined problem by expressing the acoustic pressure at each sensor as a phase-lagged superposition of source amplitudes at all hypothetical DOAs. Regularizing with an â„“1\ell_1-norm constraint renders the problem solvable with convex optimization, and promoting sparsity gives high-resolution DOA maps. Here, the sparse source distribution is derived using maximum a posteriori (MAP) estimates for both single and multiple snapshots. CS does not require inversion of the data covariance matrix and thus works well even for a single snapshot where it gives higher resolution than conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution methods, even with coherent arrivals and at low signal-to-noise ratio. The superior resolution of CS is demonstrated with vertical array data from the SWellEx96 experiment for coherent multi-paths.Comment: In press Journal of Acoustical Society of Americ

    Time- and Frequency-Varying KK-Factor of Non-Stationary Vehicular Channels for Safety Relevant Scenarios

    Full text link
    Vehicular communication channels are characterized by a non-stationary time- and frequency-selective fading process due to fast changes in the environment. We characterize the distribution of the envelope of the first delay bin in vehicle-to-vehicle channels by means of its Rician KK-factor. We analyze the time-frequency variability of this channel parameter using vehicular channel measurements at 5.6 GHz with a bandwidth of 240 MHz for safety-relevant scenarios in intelligent transportation systems (ITS). This data enables a frequency-variability analysis from an IEEE 802.11p system point of view, which uses 10 MHz channels. We show that the small-scale fading of the envelope of the first delay bin is Ricean distributed with a varying KK-factor. The later delay bins are Rayleigh distributed. We demonstrate that the KK-factor cannot be assumed to be constant in time and frequency. The causes of these variations are the frequency-varying antenna radiation patterns as well as the time-varying number of active scatterers, and the effects of vegetation. We also present a simple but accurate bi-modal Gaussian mixture model, that allows to capture the KK-factor variability in time for safety-relevant ITS scenarios.Comment: 26 pages, 12 figures, submitted to IEEE Transactions on Intelligent Transportation Systems for possible publicatio

    Robust and Sparse M-Estimation of DOA

    Full text link
    A robust and sparse Direction of Arrival (DOA) estimator is derived for array data that follows a Complex Elliptically Symmetric (CES) distribution with zero-mean and finite second-order moments. The derivation allows to choose the loss function and four loss functions are discussed in detail: the Gauss loss which is the Maximum-Likelihood (ML) loss for the circularly symmetric complex Gaussian distribution, the ML-loss for the complex multivariate tt-distribution (MVT) with ν\nu degrees of freedom, as well as Huber and Tyler loss functions. For Gauss loss, the method reduces to Sparse Bayesian Learning (SBL). The root mean square DOA error of the derived estimators is discussed for Gaussian, MVT, and ϵ\epsilon-contaminated data. The robust SBL estimators perform well for all cases and nearly identical with classical SBL for Gaussian noise

    Comparison of Ray Tracing and Channel-Sounder Measurements for Vehicular Communications

    Get PDF
    This paper presents the results of an accuracy study of a deterministic channel model for vehicle-to-vehicle (V2V) communications. Channel simulations obtained from the ray-tracing model developed by TU Braunschweig are compared to data gathered during the DRIVEWAY V2V channel measurement campaign at 5.6 GHz in the city of Lund in summer 2009. The analysis focuses on PDP and channel gains in an urban four-way intersection scenario. Despite of some implementation-based limitations of the ray-tracing model, a very good agreement between simulation and measurement results is achieved. Most relevant power contributions arising from multiple-bounce specular reflections as well as single-bounce non-specular reflections are captured by the deterministic model. We also discuss the question to what extent roadside obstacles like traffic signs, parked cars or lamp posts have to be considered when characterizing the V2V channel
    • …
    corecore