134 research outputs found

    Anomalous roughening of wood fractured surfaces

    Full text link
    Scaling properties of wood fractured surfaces are obtained from samples of three different sizes. Two different woods are studied: Norway spruce and Maritime pine. Fracture surfaces are shown to display an anomalous dynamic scaling of the crack roughness. This anomalous scaling behavior involves the existence of two different and independent roughness exponents. We determine the local roughness exponents ζloc{\zeta}_{loc} to be 0.87 for spruce and 0.88 for pine. These results are consistent with the conjecture of a universal local roughness exponent. The global roughness exponent is different for both woods, ζ\zeta = 1.60 for spruce and ζ\zeta = 1.35 for pine. We argue that the global roughness exponent ζ\zeta is a good index for material characterization.Comment: 7 two columns pages plus 8 ps figures, uses psfig. To appear in Physical Review

    Scaling of Crack Surfaces and Implications on Fracture Mechanics

    Full text link
    The scaling laws describing the roughness development of crack surfaces are incorporated into the Griffith criterion. We show that, in the case of a Family-Vicsek scaling, the energy balance leads to a purely elastic brittle behavior. On the contrary, it appears that an anomalous scaling reflects a R-curve behavior associated to a size effect of the critical resistance to crack growth in agreement with the fracture process of heterogeneous brittle materials exhibiting a microcracking damage.Comment: Revtex, 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Failure Causing Defects in Ceramics: What NDE Should Find

    No full text
    The various types of defects causing failure in a variety of ceramic materials are illustrated. Examples are drawn from such ceramics as piezoelectric, infrared transmitting, and potential turbine materials. Both machining and processing defects are shown as sources of failure. The former are selected to illustrate the effects of machining parameters. Processing defects illustrated include pores, foreign particles and large grains, or clusters of these. Changes in the size of defects with specimen size are also noted.</p
    corecore