16 research outputs found

    Haemostatic changes in urogenital schistosomiasis haematobium: A case-control study in Gabonese schoolchildren

    Get PDF
    In many tropical areas schistosomiasis is a major health problem causing hepatosplenic, intestinal or urogenital complaints. Hepatosplenic schistosomiasis mansoni is also characterized by blood coagulation abnormalities. Liver pathology plays a role in the development of haemostatic changes and the parasitic infection may directly affect coagulation. However, these contributing factors cannot be studied separately in hepatosplenic schistosomiasis infections. This pilot study provides insight in haemostatic changes in urinary schistosomiasis by studying coagulation parameters in schistosomiasis haematobium-infected Gabonese schoolchildren. Selection on urinary schistosomiasis patients without hepatosplenic complaints allows for the investigation of the direct effects of the parasite on haemostasis. Levels of von Willebrand Factor (VWF) antigen, active VWF and osteoprotegerin were elevated, indicating inflammation-mediated endothelial activation. In contrast to hepatosplenic schistosomiasis, thrombin-antithrombin complex and D-dimer levels were not affected. Despite its small sample size, this study clearly indicates that Schistosoma haematobium directly alters the activation status of the endothelium, without initiation of coagulation

    The Influence of Human IgG Subclass and Allotype on Complement Activation

    Get PDF
    Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics. The Journal of Immunology, 2023, 211: 1725-1735

    The Influence of Human IgG Subclass and Allotype on Complement Activation

    Get PDF
    Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics. The Journal of Immunology, 2023, 211: 1725-1735

    Schistosoma mansoni does not and cannot oxidise fatty acids, but these are used for biosynthetic purposes instead

    No full text
    Adult schistosomes, parasitic flatworms that cause the tropical disease schistosomiasis, have always been considered to be homolactic fermenters and, in their energy metabolism, strictly dependent on carbohydrates. However, more recent studies suggested that fatty acid β-oxidation is essential for egg production by adult female Schistosoma mansoni. To address this conundrum, we performed a comprehensive study on the lipid metabolism of S. mansoni. Incubations with [14C]-labelled fatty acids demonstrated that adults, eggs and miracidia of S. mansoni did not oxidise fatty acids, as no 14CO2 production could be detected. We then re-examined the S. mansoni genome using the genes known to be involved in fatty acid oxidation in six eukaryotic model reference species. This showed that the earlier automatically annotated genes for fatty acid oxidation were in fact incorrectly annotated. In a further analysis we could not detect any genes encoding β-oxidation enzymes, which demonstrates that S. mansoni cannot use this pathway in any of its lifecycle stages. The same was true for Schistosoma japonicum and all other schistosome species that have been sequenced. Absence of β-oxidation, however, does not imply that fatty acids from the host are not metabolised by schistosomes. Adult schistosomes can use and modify fatty acids from their host for biosynthetic purposes and incorporate those in phospholipids and neutral lipids. Female worms deposit large amounts of these lipids in the eggs they produce, which explains why interference with the lipid metabolism in females will disturb egg formation, even though fatty acid β-oxidation does not occur in schistosomes. Our analyses of S. mansoni further revealed that during the development and maturation of the miracidium inside the egg, changes in lipid composition occur which indicate that fatty acids deposited in the egg by the female worm are used for phospholipid biosynthesis required for membrane formation in the developing miracidium

    Schistosoma mansoni does not and cannot oxidise fatty acids, but these are used for biosynthetic purposes instead

    No full text
    Adult schistosomes, parasitic flatworms that cause the tropical disease schistosomiasis, have always been considered to be homolactic fermenters and, in their energy metabolism, strictly dependent on carbohydrates. However, more recent studies suggested that fatty acid β-oxidation is essential for egg production by adult female Schistosoma mansoni. To address this conundrum, we performed a comprehensive study on the lipid metabolism of S. mansoni. Incubations with [14C]-labelled fatty acids demonstrated that adults, eggs and miracidia of S. mansoni did not oxidise fatty acids, as no 14CO2 production could be detected. We then re-examined the S. mansoni genome using the genes known to be involved in fatty acid oxidation in six eukaryotic model reference species. This showed that the earlier automatically annotated genes for fatty acid oxidation were in fact incorrectly annotated. In a further analysis we could not detect any genes encoding β-oxidation enzymes, which demonstrates that S. mansoni cannot use this pathway in any of its lifecycle stages. The same was true for Schistosoma japonicum and all other schistosome species that have been sequenced. Absence of β-oxidation, however, does not imply that fatty acids from the host are not metabolised by schistosomes. Adult schistosomes can use and modify fatty acids from their host for biosynthetic purposes and incorporate those in phospholipids and neutral lipids. Female worms deposit large amounts of these lipids in the eggs they produce, which explains why interference with the lipid metabolism in females will disturb egg formation, even though fatty acid β-oxidation does not occur in schistosomes. Our analyses of S. mansoni further revealed that during the development and maturation of the miracidium inside the egg, changes in lipid composition occur which indicate that fatty acids deposited in the egg by the female worm are used for phospholipid biosynthesis required for membrane formation in the developing miracidium

    Fibrinogen and fibrin are novel substrates for Fasciola hepatica cathepsin L peptidases

    No full text
    Cathepsin peptidases form a major component of the secreted proteins of the blood-feeding trematodes Fasciola hepatica and Schistosoma mansoni. These peptidases fulfill many functions, from facilitating infection to feeding and immune evasion. In this study, we examined the Fasciola cathepsin L peptidases FhCL1, FhCL2, and FhCL3 and the schistosomal cathepsin peptidases SmCB1 and SmCL3 for their anticoagulant properties. Although no direct anticoagulant effect of these peptidases was observed, we discovered that cathepsin peptidases from Fasciola, but not from Schistosoma, were able to degrade purified fibrinogen, with FhCL1 having the highest fibrinogenolytic activity. Additionally, FhCL1 and FhCL2 both efficiently degraded fibrin. The lack of a direct anticoagulant or fibrinolytic effect of these peptidases is explained by their inhibition by plasma components. However, within the parasite gut, high concentrations of these peptidases could induce an anticoagulant environment, facilitating blood-feeding for extended periods

    Fibrinogen and fibrin are novel substrates for Fasciola hepatica cathepsin L peptidases

    No full text
    Cathepsin peptidases form a major component of the secreted proteins of the blood-feeding trematodes Fasciola hepatica and Schistosoma mansoni. These peptidases fulfill many functions, from facilitating infection to feeding and immune evasion. In this study, we examined the Fasciola cathepsin L peptidases FhCL1, FhCL2, and FhCL3 and the schistosomal cathepsin peptidases SmCB1 and SmCL3 for their anticoagulant properties. Although no direct anticoagulant effect of these peptidases was observed, we discovered that cathepsin peptidases from Fasciola, but not from Schistosoma, were able to degrade purified fibrinogen, with FhCL1 having the highest fibrinogenolytic activity. Additionally, FhCL1 and FhCL2 both efficiently degraded fibrin. The lack of a direct anticoagulant or fibrinolytic effect of these peptidases is explained by their inhibition by plasma components. However, within the parasite gut, high concentrations of these peptidases could induce an anticoagulant environment, facilitating blood-feeding for extended periods
    corecore