3 research outputs found
Fostering student engagement through a real-world, collaborative project across disciplines and institutions
Ample research has identified several features of a learning experience likely to enhance student learning, including collaboration, open-ended exploration, and problem-based learning in real-life scenarios. Missing is a model of how instructors might combine these elements into a single project that works flexibly across disciplines and institutions. This article fills this gap by offering such a model and reporting on its effectiveness in fostering student engagement. It describes a project that instructors at four colleges and universities in Flint, Michigan (USA) piloted during the height of the Flint water crisis. The project asked students to apply class content to the real-world problem unfolding around them, and offered students an opportunity to collaborate with peers. We collected qualitative and quantitative data on students’ reactions to the project, and found that the project succeeded in engaging students. We offer recommendations for how instructors can create similar projects in their own classrooms
Data from: Diversifying selection and color-biased dispersal in the asp viper
Background: The presence of intraspecific color polymorphism can have multiple impacts on the ecology of a species; as a consequence, particular color morphs may be strongly selected for in a given habitat type. For example, the asp viper (Vipera aspis) shows a high level of color polymorphism. A blotched morph (cryptic) is common throughout its range (central and western Europe), while a melanistic morph is frequently found in montane populations, presumably for thermoregulatory reasons. Besides, rare atypical uniformly colored individuals are known here and there. Nevertheless, we found in a restricted treeless area of the French Alps, a population containing a high proportion (>50%) of such specimens. The aim of the study is to bring insight into the presence and function of this color morph by (i) studying the genetic structure of these populations using nine microsatellite markers, and testing for (ii) a potential local diversifying selection and (iii) differences in dispersal capacity between blotched and non-blotched vipers. Results: Our genetic analyses support the occurrence of local diversifying selection for the non-blotched phenotype. In addition, we found significant color-biased dispersal, blotched individuals dispersing more than atypical individuals. Conclusion: We hypothesize that, in this population, the non-blotched phenotype possess an advantage over the typical one, a phenomenon possibly due to a better background matching ability in a more open habitat. In addition, color-biased dispersal might be partly associated with the observed local diversifying selection, as it can affect the genetic structure of populations, and hence the distribution of color morphs
for Dryad
file in Structure format with the coloration, the sex, population ID where the sample was collected, and the length of 9 microsatellite marker