43 research outputs found

    Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations

    No full text
    The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions

    La phospholipase D, une voie de signalisation lipidique impliquée dans de multiples fonctions cellulaires : morphologie, prolifération, différenciation

    No full text
    La phospholipase D (PLD) qui hydrolyse la phosphatidylcholine des membranes cellulaires libÚre un médiateur phospholipidique, l\u27acide phosphatidique, et joue un rÎle dans diverses fonctions. La différenciation des myoblastes L6 induit une régulation biphasique des taux de céramide, avec une décroissance initiale suivie d\u27une biosynthÚse par la voie de novo. Le céramide a un effet négatif sur la différenciation, lié à l\u27inhibition de l\u27expression de l\u27isoforme PLD1 et de la réorganisation PLD1-dépendante du cytosquelette. Par ailleurs, nous montrons que la PLD est impliquée dans le contrÎle de la perméabilité paracellulaire des cellules endothéliales à travers un remodelage PLD-dépendant du cytosquelette et une modification morphologique. De plus, nous montrons que la perturbation des radeaux lipidiques membranaires par des agents agissant spécifiquement sur les lipides de ce compartiment est associée à une activation de la PLD et à une inhibition de la prolifération lymphocytaire

    La Phospholipase D, une voie de signalisation lipidique impliquée dans de multiples fonctions cellulaires (morphologie, prolifération, différenciation)

    No full text
    La phospholipase D (PLD), qui hydrolyse la phosphatidylcholine des membranes cellulaires et donne naissance à un médiateur phospholipidique, l'acide phosphatidique, joue un rÎle central dans diverses fonctions cellulaires. Nous avons tout d'abord mis en évidence l'implication des céramides dans la différenciation des myoblastes de rat L6. Ces cellules sont capables de se différencier in vitro en myotubes polynucléés exprimant divers marqueurs du tissu musculaire, en présence de vasopressine. Cette hormone induit une régulation biphasique des taux cellulaires de céramides, avec une décroissance dans les premiÚres heures, suivie d'une augmentation jusqu'au 8e jour, attribuable à l'activation de la voie de biosynthÚse de novo. Les céramides ainsi formés ont un effet régulateur négatif sur la différenciation, au moins en partie à cause du contrÎle négatif qu'ils exercent sur l'expression de l'isoforme PLD1, dont nous avions démontré le caractÚre indispensable à la myogénÚse. Nous avons de plus observé que les céramides inhibent le réorganisation PLD1- dépendante du cytosquelette d'actine, une des premiÚres étapes du processus myogénique. La régulation de la PLD par les céramides semble constituer une cible pharmacologique intéressante pour des actions visant à favoriser la régénération musculaire dans diverses situations pathologiques. Par ailleurs, nous avons montré que la PLD intervient dans le contrÎle de la perméabilité paracellulaire d'une monocouche de cellules endothéliales HUV-EC-C aux macromolécules, grùce à ses effets sur le cytosquelette d'actine. Les lipoprotéines de faible densité (LDL), natives ou oxydées, mises en contact avec la monocouche, sont capables de stimuler l'activité PLD des cellules et la perméabilité aux macromolécules. Elles provoquent en parallÚle un remodelage PLD-dépendant du cytosquelette avec la formation de fibres de stress, et un changement de morphologie cellulaire. Les LDL stimulent donc leur propre passage transendothélial, via leur capacité à réguler la PLD. Un défaut de régulation de la PLD pourrait contribuer à une accumulation subendothéliale anormale des LDL, et, étant donné le rÎle proathérogÚne de ces molécules, à l'accélération du processus athéroscléreux. Des travaux antérieurs avaient établi la présence de l'isoforme PLD1 au niveau des radeaux lipidiques membranaires de lymphocytes périphériques humains, et suggéré un lien entre la délocalisation de l'enzyme, son activation, et une inhibition de la réponse aux mitogÚnes. Nous avons confirmé que la perturbation des radeaux, par des agents agissant spécifiquement sur les lipides de ce compartiment, est associée à une activation de la PLD et à une inhibition de la prolifération lymphocytaire. Par des expériences de surexpression, nous avons montré que l'isoforme PLD1, mas pas l'isoforme PLD2, est spécifiquement responsable d'un contrÎle négatif de l'activation lymphocytaire. La mise en évidence de la régulation de PLD1 par inclusion / exclusion du compartiment radeaux lipidiques, et la démonstration de son implication dans le contrÎle de la réponse lymphocytaire, devraient permettre de mieux comprendre les mécanismes moléculaires impliqués dans diverses pathologies de l'immunité.Phospholipase D (PLD) hydrolyses phosphatidylcholine of cell membranes in response to a variety of agonists, to generate phosphatidic acid, a second messenger implicated in cell functions such as cytoskeletal reorganization. In L6 skeletal myoblasts induced to differentiate, a short-lived lowering of ceramide levels was followed by a long-lasting elevation due to de novo synthesis. Ceramide mediates a negative control of myogenic differentiation, at least in part through down-regulation of PLD1 isoform expression and inhibition of PLD1-dependent formation of stress fibers. Moreover, we show that PLD is involved in paracellular permeability of endothelial cells through actin cytoskeleton reorganization, and morphological changes. In addition, we show that disruption of membrane lipid rafts by agents specifically active on the lipids of this compartment, induces an activation of PLD and generates anti-proliferative signals in lymphocytes.VILLEURBANNE-DOC'INSA LYON (692662301) / SudocSudocFranceF

    La Phospholipase D, une voie de signalisation lipidique impliquée dans de multiples fonctions cellulaires (morphologie, prolifération, différenciation)

    No full text
    La phospholipase D (PLD), qui hydrolyse la phosphatidylcholine des membranes cellulaires et donne naissance à un médiateur phospholipidique, l'acide phosphatidique, joue un rÎle central dans diverses fonctions cellulaires. Nous avons tout d'abord mis en évidence l'implication des céramides dans la différenciation des myoblastes de rat L6. Ces cellules sont capables de se différencier in vitro en myotubes polynucléés exprimant divers marqueurs du tissu musculaire, en présence de vasopressine. Cette hormone induit une régulation biphasique des taux cellulaires de céramides, avec une décroissance dans les premiÚres heures, suivie d'une augmentation jusqu'au 8e jour, attribuable à l'activation de la voie de biosynthÚse de novo. Les céramides ainsi formés ont un effet régulateur négatif sur la différenciation, au moins en partie à cause du contrÎle négatif qu'ils exercent sur l'expression de l'isoforme PLD1, dont nous avions démontré le caractÚre indispensable à la myogénÚse. Nous avons de plus observé que les céramides inhibent le réorganisation PLD1- dépendante du cytosquelette d'actine, une des premiÚres étapes du processus myogénique. La régulation de la PLD par les céramides semble constituer une cible pharmacologique intéressante pour des actions visant à favoriser la régénération musculaire dans diverses situations pathologiques. Par ailleurs, nous avons montré que la PLD intervient dans le contrÎle de la perméabilité paracellulaire d'une monocouche de cellules endothéliales HUV-EC-C aux macromolécules, grùce à ses effets sur le cytosquelette d'actine. Les lipoprotéines de faible densité (LDL), natives ou oxydées, mises en contact avec la monocouche, sont capables de stimuler l'activité PLD des cellules et la perméabilité aux macromolécules. Elles provoquent en parallÚle un remodelage PLD-dépendant du cytosquelette avec la formation de fibres de stress, et un changement de morphologie cellulaire. Les LDL stimulent donc leur propre passage transendothélial, via leur capacité à réguler la PLD. Un défaut de régulation de la PLD pourrait contribuer à une accumulation subendothéliale anormale des LDL, et, étant donné le rÎle proathérogÚne de ces molécules, à l'accélération du processus athéroscléreux. Des travaux antérieurs avaient établi la présence de l'isoforme PLD1 au niveau des radeaux lipidiques membranaires de lymphocytes périphériques humains, et suggéré un lien entre la délocalisation de l'enzyme, son activation, et une inhibition de la réponse aux mitogÚnes. Nous avons confirmé que la perturbation des radeaux, par des agents agissant spécifiquement sur les lipides de ce compartiment, est associée à une activation de la PLD et à une inhibition de la prolifération lymphocytaire. Par des expériences de surexpression, nous avons montré que l'isoforme PLD1, mas pas l'isoforme PLD2, est spécifiquement responsable d'un contrÎle négatif de l'activation lymphocytaire. La mise en évidence de la régulation de PLD1 par inclusion / exclusion du compartiment radeaux lipidiques, et la démonstration de son implication dans le contrÎle de la réponse lymphocytaire, devraient permettre de mieux comprendre les mécanismes moléculaires impliqués dans diverses pathologies de l'immunité.Phospholipase D (PLD) hydrolyses phosphatidylcholine of cell membranes in response to a variety of agonists, to generate phosphatidic acid, a second messenger implicated in cell functions such as cytoskeletal reorganization. In L6 skeletal myoblasts induced to differentiate, a short-lived lowering of ceramide levels was followed by a long-lasting elevation due to de novo synthesis. Ceramide mediates a negative control of myogenic differentiation, at least in part through down-regulation of PLD1 isoform expression and inhibition of PLD1-dependent formation of stress fibers. Moreover, we show that PLD is involved in paracellular permeability of endothelial cells through actin cytoskeleton reorganization, and morphological changes. In addition, we show that disruption of membrane lipid rafts by agents specifically active on the lipids of this compartment, induces an activation of PLD and generates anti-proliferative signals in lymphocytes.VILLEURBANNE-DOC'INSA LYON (692662301) / SudocSudocFranceF

    Increased phospholipase D activity contributes to tumorigenesis in prostate cancer cell models

    No full text
    International audienceProstate cancer (PCa) is the most frequent cancer among men and the first cause of death over 65. Approximately 90% of patients with advanced disease will develop bone metastasis, which dramatically reduces long-term survival. Therefore, effective therapies need to be developed, especially when disease is still well-localized. Phospholipase D (PLD), an enzyme that hydrolyzes phosphatidylcholine to yield phosphatidic acid, regulates several cellular functions as proliferation, survival, migration or vesicular trafficking. PLD is implicated in numerous diseases such as neurodegenerative, cardiovascular, autoimmune disorders or cancer. Indeed, PLD controls different aspects of oncogenesis including tumor progression and resistance to targeted therapies such as radiotherapy. PLD1 and PLD2 are the only isoforms with catalytic activity involved in cancer. Surprisingly, studies deciphering the role of PLD in the pathophysiology of PCa are scarce. Here we describe the correlation between PLD activity and PLD1 and PLD2 expression in PCa bone metastasis-derived cell lines C4-2B and PC-3. Next, by using PLD pharmacological inhibitors and RNA interference strategy, we validate the implication of PLD1 and PLD2 in cell viability, clonogenicity and proliferation of C4-2B and PC-3 cells and in migration capacity of PC-3 cells. Last, we show an increase in PLD activity as well as PLD2 protein expression during controlled starvation of PC-3 cells, concomitant with an augmentation of its migration capacity. Specifically, upregulation of PLD activity appears to be PKC-independent. Taken together, our results indicate that PLD, and in particular PLD2, could be considered as a potential therapeutic target for the treatment of PCa-derived bone metastasis

    Direct determination of phospholipase D activity by infrared spectroscopy.

    No full text
    International audienceTo determine phospholipase D (PLD) activity, an infrared spectroscopy assay was developed, based on the phosphate vibrational mode of phospholipids such as dimyristoylphophatidylcholine (DMPC), lysophosphatidylglycerol (lysoPG), dipalmitoylphosphatidylethanolamine (DPPE), and lysophosphatidylserine (lysoPS). The phosphate bands served to monitor the hydrolysis rates of phospholipids with PLD. The measurements could be performed within less than 20min with 10Όl of buffer containing 2 to 40mM DMPC and 10 to 200ng of Streptomyces chromofuscus PLD (corresponding to 350-7000pmol of DMPC hydrolyzed per minute). The limit of sensitivity was approximately 10ng of PLD at 100mM Tris-HCl (pH 8.0) with 10mM Ca(2+) and 2.5mgml(-1) Triton X-100. Reproducible specific activity of PLD (35±5nmol of hydrolyzed DMPCmin(-1)Όg(-1) PLD) measured by the infrared assay remained stable over 50 to 200ng of PLD and over 5 to 40mM DMPC. The feasibility of this assay to determine the hydrolysis rate of other phospholipids such as lysoPG, DPPE, and lysoPS was confirmed. The IC(50) of cobalt (800±200ΌM), a known S. chromofuscus PLD inhibitor, was measured by means of the infrared assay, demonstrating that this assay can be used to screen PLD activity and/or the specificity of its inhibitors

    Microwave‐Assisted Syntheses of Rhodamine, Rhodol, and Fluorescein Derivatives

    No full text
    A series of rhodol-; fluorescein- and rhodamines-based spirolactam compounds, bearing electron donor amines have been prepared. For this purpose we have redesigned the synthesis of the rhodol scaffold using 2-(2,4-dihydroxybenzoyl)benzoic acid obtaining one example rhodol methyl ester in good yields (25-30 %) Thus, one set of non-cytotoxic rhodamine-based compounds has been prepared using thermal and microwave assisted synthesis (40-78 %) and tested as high affinity ATP chemo-sensors
    corecore