35 research outputs found

    Does hypohydration really impair endurance performance? Methodological considerations for interpreting hydration research

    Get PDF
    The impact of alterations in hydration status on human physiology and performance responses during exercise is one of the oldest research topics in sport and exercise nutrition. This body of work has mainly focussed on the impact of reduced body water stores (i.e. hypohydration) on these outcomes, on the whole demonstrating that hypohydration impairs endurance performance, likely via detrimental effects on a number of physiological functions. However, an important consideration, that has received little attention, is the methods that have traditionally been used to investigate how hypohydration affects exercise outcomes, as those used may confound the results of many studies. There are two main methodological limitations in much of the published literature that perhaps make the results of studies investigating performance outcomes difficult to interpret. First, subjects involved in studies are generally not blinded to the intervention taking place (i.e. they know what their hydration status is), which may introduce expectancy effects. Second, most of the methods used to induce hypohydration are both uncomfortable and unfamiliar to the subjects, meaning that alterations in performance may be caused by this discomfort, rather than hypohydration per se. This review discusses these methodological considerations and provides an overview of the small body of recent work that has attempted to correct some of these methodological issues. On balance, these recent blinded hydration studies suggest hypohydration equivalent to 2–3% body mass decreases endurance cycling performance in the heat, at least when no/little fluid is ingested

    Neutralising immunity to omicron sublineages BQ.1.1, XBB, and XBB.1.5 in healthy adults is boosted by bivalent BA.1-containing mRNA vaccination and previous Omicron infection

    Get PDF
    The global COVID-19 landscape is increasingly complex; emerging new variants rapidly cause waves of infection in people with variably induced immunity. Most individuals now have so-called hybrid immunity from both infection and vaccination. However, sequential infecting variants, induction of immunity, and subsequent waning are interlinked, and immune protection against new variants is unclear

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    The individual and relative contributions of different regions of the visual field to visual search

    No full text
    The individual and relative contributions of foveal, central and peripheral vision to object-scene search were assessed using the window and scotoma paradigms. The visual field simulation (window or scotoma and a control), crossed with 3 radii of window or scotoma (1.5°, 5° or 8.6°) was centred on the viewer’s gaze using a Gaze Contingent Multiresolutional Display. Windows and scotoma had smoothedged boundaries and visual information which was restricted from contributing to the visual task was presented in low-resolution. It was found that foveal information was neither necessary nor sufficient for visual search. This replicated previous findings (Nuthmann, 2010). Central and peripheral information were both found to be necessary but not sufficient for normal visual search. The contribution of central information was found to be of greater importance than the contribution of peripheral information. A cross-over point at which search performance was the same in both the window and scotoma conditions was found, at a radius slightly smaller than 5°. At this radius less area was presented in high-resolution in the window condition, indicating that central information is privileged relative to peripheral information. It was found that the perceptual span for visual search was 8.6°
    corecore