846 research outputs found
Ballistic thermal conductance limited by phonon roughness scattering: A comparison of power-law and Gaussian roughness
In this work, we have investigated the influence of power-law roughness on the ballistic thermal conductance KTH for a nanosized beam adiabatically connected between two heat reservoirs. The sideways wall beam roughness is assumed to be power-law type, which is described by the roughness amplitude w, the in-plane roughness correlation length ξ and the roughness exponent 0≤H≤1. Distinct differences occur in between power-law and Gaussian wall roughness. For power-law roughness with low roughness exponents H (<0.5), the influence of phonon scattering can be rather destructive leading to significant deviations from the universal conductance value for flat beam walls. On the other hand for large roughness exponents (H>0.5) the conductance drop is significantly smaller than that of Gaussian roughness assuming similar roughness ratios w/ξ.
Multifractal Dimensions for Branched Growth
A recently proposed theory for diffusion-limited aggregation (DLA), which
models this system as a random branched growth process, is reviewed. Like DLA,
this process is stochastic, and ensemble averaging is needed in order to define
multifractal dimensions. In an earlier work [T. C. Halsey and M. Leibig, Phys.
Rev. A46, 7793 (1992)], annealed average dimensions were computed for this
model. In this paper, we compute the quenched average dimensions, which are
expected to apply to typical members of the ensemble. We develop a perturbative
expansion for the average of the logarithm of the multifractal partition
function; the leading and sub-leading divergent terms in this expansion are
then resummed to all orders. The result is that in the limit where the number
of particles n -> \infty, the quenched and annealed dimensions are {\it
identical}; however, the attainment of this limit requires enormous values of
n. At smaller, more realistic values of n, the apparent quenched dimensions
differ from the annealed dimensions. We interpret these results to mean that
while multifractality as an ensemble property of random branched growth (and
hence of DLA) is quite robust, it subtly fails for typical members of the
ensemble.Comment: 82 pages, 24 included figures in 16 files, 1 included tabl
Universal Behavior of the Coefficients of the Continuous Equation in Competitive Growth Models
The competitive growth models involving only one kind of particles (CGM), are
a mixture of two processes one with probability and the other with
probability . The dependance produce crossovers between two different
regimes. We demonstrate that the coefficients of the continuous equation,
describing their universality classes, are quadratic in (or ). We show
that the origin of such dependance is the existence of two different average
time rates. Thus, the quadratic dependance is an universal behavior of all
the CGM. We derive analytically the continuous equations for two CGM, in 1+1
dimensions, from the microscopic rules using a regularization procedure. We
propose generalized scalings that reproduce the scaling behavior in each
regime. In order to verify the analytic results and the scalings, we perform
numerical integrations of the derived analytical equations. The results are in
excellent agreement with those of the microscopic CGM presented here and with
the proposed scalings.Comment: 9 pages, 3 figure
Diffusion-Limited Aggregation Processes with 3-Particle Elementary Reactions
A diffusion-limited aggregation process, in which clusters coalesce by means
of 3-particle reaction, A+A+A->A, is investigated. In one dimension we give a
heuristic argument that predicts logarithmic corrections to the mean-field
asymptotic behavior for the concentration of clusters of mass at time ,
, for . The total
concentration of clusters, , decays as at . We also investigate the problem with a localized steady source of
monomers and find that the steady-state concentration scales as
, , and , respectively,
for the spatial dimension equal to 1, 2, and 3. The total number of
clusters, , grows with time as , , and
for = 1, 2, and 3. Furthermore, in three dimensions we
obtain an asymptotic solution for the steady state cluster-mass distribution:
, with the scaling function
and the scaling variable .Comment: 12 pages, plain Te
Phase transitions in diluted negative-weight percolation models
We investigate the geometric properties of loops on two-dimensional lattice
graphs, where edge weights are drawn from a distribution that allows for
positive and negative weights. We are interested in the appearance of spanning
loops of total negative weight. The resulting percolation problem is
fundamentally different from conventional percolation, as we have seen in a
previous study of this model for the undiluted case.
Here, we investigate how the percolation transition is affected by additional
dilution. We consider two types of dilution: either a certain fraction of edges
exhibit zero weight, or a fraction of edges is even absent. We study these
systems numerically using exact combinatorial optimization techniques based on
suitable transformations of the graphs and applying matching algorithms. We
perform a finite-size scaling analysis to obtain the phase diagram and
determine the critical properties of the phase boundary.
We find that the first type of dilution does not change the universality
class compared to the undiluted case whereas the second type of dilution leads
to a change of the universality class.Comment: 8 pages, 7 figure
Discrete surface growth process as a synchronization mechanism for scale free complex networks
We consider the discrete surface growth process with relaxation to the
minimum [F. Family, J. Phys. A {\bf 19} L441, (1986).] as a possible
synchronization mechanism on scale-free networks, characterized by a degree
distribution , where is the degree of a node and
his broadness, and compare it with the usually applied
Edward-Wilkinson process [S. F. Edwards and D. R. Wilkinson, Proc. R. Soc.
London Ser. A {\bf 381},17 (1982) ]. In spite of both processes belong to the
same universality class for Euclidean lattices, in this work we demonstrate
that for scale-free networks with exponents this is not true.
Moreover, we show that for these ubiquitous cases the Edward-Wilkinson process
enhances spontaneously the synchronization when the system size is increased,
which is a non-physical result. Contrarily, the discrete surface growth process
do not present this flaw and is applicable for every .Comment: 8 pages, 4 figure
Finite-element analysis of contact between elastic self-affine surfaces
Finite element methods are used to study non-adhesive, frictionless contact
between elastic solids with self-affine surfaces. We find that the total
contact area rises linearly with load at small loads. The mean pressure in the
contact regions is independent of load and proportional to the rms slope of the
surface. The constant of proportionality is nearly independent of Poisson ratio
and roughness exponent and lies between previous analytic predictions. The
contact morphology is also analyzed. Connected contact regions have a fractal
area and perimeter. The probability of finding a cluster of area drops as
where increases with decreasing roughness exponent. The
distribution of pressures shows an exponential tail that is also found in many
jammed systems. These results are contrasted to simpler models and experiment.Comment: 13 pages, 15 figures. Replaced after changed in response to referee
comments. Final two figures change
Exact Multifractal Exponents for Two-Dimensional Percolation
The harmonic measure (or diffusion field or electrostatic potential) near a
percolation cluster in two dimensions is considered. Its moments, summed over
the accessible external hull, exhibit a multifractal spectrum, which I
calculate exactly. The generalized dimensions D(n) as well as the MF function
f(alpha) are derived from generalized conformal invariance, and are shown to be
identical to those of the harmonic measure on 2D random walks or self-avoiding
walks. An exact application to the anomalous impedance of a rough percolative
electrode is given. The numerical checks are excellent. Another set of exact
and universal multifractal exponents is obtained for n independent
self-avoiding walks anchored at the boundary of a percolation cluster. These
exponents describe the multifractal scaling behavior of the average nth moment
of the probabity for a SAW to escape from the random fractal boundary of a
percolation cluster in two dimensions.Comment: 5 pages, 3 figures (in colors
Microstructure and velocity of field-driven solid-on-solid interfaces moving under stochastic dynamics with local energy barriers
We study the microscopic structure and the stationary propagation velocity of
(1+1)-dimensional solid-on-solid interfaces in an Ising lattice-gas model,
which are driven far from equilibrium by an applied force, such as a magnetic
field or a difference in (electro)chemical potential. We use an analytic
nonlinear-response approximation [P.A. Rikvold and M. Kolesik, J. Stat. Phys.
100, 377 (2000)] together with kinetic Monte Carlo simulations. Here we
consider interfaces that move under Arrhenius dynamics, which include a
microscopic energy barrier between the allowed Ising/lattice-gas states. Two
different dynamics are studied: the standard one-step dynamic (OSD) [H.C. Kang
and W. Weinberg, J. Chem. Phys. 90, 2824 (1992)] and the two-step
transition-dynamics approximation (TDA) [T. Ala-Nissila, J. Kjoll, and S.C.
Ying, Phys. Rev. B 46, 846 (1992)]. In the OSD the effects of the applied force
and the interaction energies in the model factorize in the transition rates (a
soft dynamic), while in the TDA such factorization is not possible (a hard
dynamic). In full agreement with previous general theoretical results we find
that the local interface width under the TDA increases dramatically with the
applied force. In contrast, the interface structure with the OSD is only weakly
influenced by the force, in qualitative agreement with the theoretical
expectations. Results are also obtained for the force-dependence and anisotropy
of the interface velocity, which also show differences in good agreement with
the theoretical expectations for the differences between soft and hard
dynamics. Our results confirm that different stochastic interface dynamics that
all obey detailed balance and the same conservation laws nevertheless can lead
to radically different interface responses to an applied force.Comment: 18 pages RevTex. Minor revisions. Phys. Rev. B, in pres
Kinetics of catalysis with surface disorder
We study the effects of generalised surface disorder on the monomer-monomer
model of heterogeneous catalysis, where disorder is implemented by allowing
different adsorption rates for each lattice site. By mapping the system in the
reaction-controlled limit onto a kinetic Ising model, we derive the rate
equations for the one and two-spin correlation functions. There is good
agreement between these equations and numerical simulations. We then study the
inclusion of desorption of monomers from the substrate, first by both species
and then by just one, and find exact time-dependent solutions for the one-spin
correlation functions.Comment: LaTex, 19 pages, 1 figure included, requires epsf.st
- …