5,452 research outputs found

    Neural Filters for Jet Analysis

    Full text link
    We study the efficiency of a neural-net filter and deconvolution method for estimating jet energies and spectra in high-background reactions such as nuclear collisions at the relativistic heavy-ion collider and the large hadron collider. The optimal network is shown to be surprisingly close but not identical to a linear high-pass filter. A suitably constrained deconvolution method is shown to uncover accurately the underlying jet distribution in spite of the broad network response. Finally, we show that possible changes of the jet spectrum in nuclear collisions can be analyzed quantitatively, in terms of an effective energy loss with the proposed method. {} {Dong D W and Gyulassy M 1993}{Neural filters for jet analysis} {(LBL-31560) Physical Review E Vol~47(4) pp~2913-2922}Comment: 21 pages of Postscript, (LBL-31560

    An analysis of galaxy cluster mis-centring using cosmological hydrodynamic simulations

    Get PDF
    The location of a galaxy cluster’s centroid is typically derived from observations of the galactic and/or gas component of the cluster, but these typically deviate from the true centre. This can produce bias when observations are combined to study average cluster properties. Using data from the BAryons and HAloes of MAssive Systems (BAHAMAS) cosmological hydrodynamic simulations, we study this bias in both two and three dimensions for 2000 clusters over the 1013–1015 M⊙ mass range. We quantify and model the offset distributions between observationally motivated centres and the ‘true’ centre of the cluster, which is taken to be the most gravitationally bound particle measured in the simulation. We fit the cumulative distribution function of offsets with an exponential distribution and a Gamma distribution fit well with most of the centroid definitions. The galaxy-based centres can be seen to be divided into a mis-centred group and a well-centred group, with the well-centred group making up about 60 per cent of all the clusters. Gas-based centres are overall less scattered than galaxy-based centres. We also find a cluster-mass dependence of the offset distribution of gas-based centres, with generally larger offsets for smaller mass clusters. We then measure cluster density profiles centred at each choice of the centres and fit them with empirical models. Stacked, mis-centred density profiles fit to the Navarro–Frenk–White dark matter profile and Komatsu–Seljak gas profile show that recovered shape and size parameters can significantly deviate from the true values. For the galaxy-based centres, this can lead to cluster masses being underestimated by up to 10 per cent⁠

    Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific Language Impairments

    Get PDF
    Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∌33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discusse

    Black Hole Information vs. Locality

    Full text link
    We discuss the limitations on space time measurement in the Schwarzchild metric. We find that near the horizon the limitations on space time measurement are of the order of the black hole radius. We suggest that it indicates that a large mass black hole cannot be described by means of local field theory even at macroscopic distances and that any attempt to describe black hole formation and evaporation by means of an effective local field theory will necessarily lead to information loss. We also present a new interpretation of the black hole entropy which leads to S=cAS=cA , where cc is a constant of order 11 which does not depend on the number of fields.Comment: 19 pages, final version to appear in Phys. Rev.

    Calculation of Densities of States and Spectral Functions by Chebyshev Recursion and Maximum Entropy

    Full text link
    We present an efficient algorithm for calculating spectral properties of large sparse Hamiltonian matrices such as densities of states and spectral functions. The combination of Chebyshev recursion and maximum entropy achieves high energy resolution without significant roundoff error, machine precision or numerical instability limitations. If controlled statistical or systematic errors are acceptable, cpu and memory requirements scale linearly in the number of states. The inference of spectral properties from moments is much better conditioned for Chebyshev moments than for power moments. We adapt concepts from the kernel polynomial approximation, a linear Chebyshev approximation with optimized Gibbs damping, to control the accuracy of Fourier integrals of positive non-analytic functions. We compare the performance of kernel polynomial and maximum entropy algorithms for an electronic structure example.Comment: 8 pages RevTex, 3 postscript figure

    Magnon dispersion and thermodynamics in CsNiF_3

    Full text link
    We present an accurate transfer matrix renormalization group calculation of the thermodynamics in a quantum spin-1 planar ferromagnetic chain. We also calculate the field dependence of the magnon gap and confirm the accuracy of the magnon dispersion derived earlier through an 1/n expansion. We are thus able to examine the validity of a number of previous calculations and further analyze a wide range of experiments on CsNiF_3 concerning the magnon dispersion, magnetization, susceptibility, and specific heat. Although it is not possible to account for all data with a single set of parameters, the overall qualitative agreement is good and the remaining discrepancies may reflect departure from ideal quasi-one-dimensional model behavior. Finally, we present some indirect evidence to the effect that the popular interpretation of the excess specific heat in terms of sine-Gordon solitons may not be appropriate.Comment: 9 pages 10 figure

    Electron--Vibron Interactions and Berry Phases in Charged Buckminsterfullerene: Part I

    Full text link
    A simple model for electron-vibron interactions on charged buckminsterfullerene C60n−_{60}^{n-}, n=1,
5n=1,\ldots 5, is solved both at weak and strong couplings. We consider a single HgH_g vibrational multiplet interacting with t1ut_{1u} electrons. At strong coupling the semiclassical dynamical Jahn-Teller theory is valid. The Jahn-Teller distortions are unimodal for nn=1,2,4,5 electrons, and bimodal for 3 electrons. The distortions are quantized as rigid body pseudo--rotators which are subject to geometrical Berry phases. These impose ground state degeneracies and dramatically change zero point energies. Exact diagonalization shows that the semiclassical level degeneracies and ordering survive well into the weak coupling regime. At weak coupling, we discover an enhancement factor of 5/25/2 for the pair binding energies over their classical values. This has potentially important implications for superconductivity in fullerides, and demonstrates the shortcoming of Migdal--Eliashberg theory for molecular crystals.Comment: 29 pages (+7 figures, 3 available upon request), LATEX, report-number: BM515

    "Meaning" as a sociological concept: A review of the modeling, mapping, and simulation of the communication of knowledge and meaning

    Full text link
    The development of discursive knowledge presumes the communication of meaning as analytically different from the communication of information. Knowledge can then be considered as a meaning which makes a difference. Whereas the communication of information is studied in the information sciences and scientometrics, the communication of meaning has been central to Luhmann's attempts to make the theory of autopoiesis relevant for sociology. Analytical techniques such as semantic maps and the simulation of anticipatory systems enable us to operationalize the distinctions which Luhmann proposed as relevant to the elaboration of Husserl's "horizons of meaning" in empirical research: interactions among communications, the organization of meaning in instantiations, and the self-organization of interhuman communication in terms of symbolically generalized media such as truth, love, and power. Horizons of meaning, however, remain uncertain orders of expectations, and one should caution against reification from the meta-biological perspective of systems theory

    Love, rights and solidarity: studying children's participation using Honneth's theory of recognition

    Get PDF
    Recent attempts to theorize children’s participation have drawn on a wide range of ideas, concepts and models from political and social theory. The aim of this article is to explore the specific usefulness of Honneth’s theory of a ‘struggle for recognition’ in thinking about this area of practice. The article identifies what is distinctive about Honneth’s theory of recognition, and how it differs from other theories of recognition. It then considers the relevance of Honneth’s conceptual framework to the social position of children, including those who may be involved in a variety of ‘participatory’ activities. It looks at how useful Honneth’s ideas are in direct engagement with young people’s praxis, drawing on ethnographic research with members of a children and young people’s forum. The article concludes by reflecting on the implications of this theoretical approach and the further questions which it opens up for theories of participation and of adult–child relations more generally

    Field assessment of genome edited, low asparagine wheat: Europe's first CRISPR wheat field trial.

    Get PDF
    We reported in this journal in 2021 the generation of wheat genotypes in which the asparagine synthetase gene, TaASN2, had been ‘knocked out’ using CRISPR-Cas9 (Raffan et al. 2021). The editing had been achieved by introducing genes encoding the Cas9 nuclease, four guide RNAs (gRNAs) and a Bar marker gene into wheat (Triticum aestivum) cv. Cadenza. Here we report the results of a field trial of Line 178.35, an A genome null for TaASN2, and total nulls, 23.60 and 23.75 (Raffan et al., 2021). Also included were four AB genome nulls, referred to as TILLING lines 1-4, derived from a selected line of a mutant population produced by ethyl methanesulphonate treatment of wheat cv. Cadenza seeds (Rakszegi et al., 2010). The mutated TaASN2-A2 gene from this line was backcrossed into the cv. Claire background to generate AB genome nulls (cv. Claire lacks a B genome TaASN2 gene due to a ‘natural’ deletion (Oddy et al., 2021))
    • 

    corecore