18 research outputs found

    A freely accessible, evidence based, objective system of analysis of posterior capsular opacification ; Evidence for its validity and reliability

    Get PDF
    BACKGROUND: The aim of this study was to develop a system of computerised analysis of digital images of posterior capsule opacification (PCO) that is evidence based, objective and freely available. The paper will present evidence for the reliability and validity of the developed system. METHODS: The system of PCO analysis was developed considering current published evidence on visual significance of PCO and additional investigative analysis of PCO images. Details of the image processing and analysis steps are discussed and a final system that measures an entropy score weighted toward proximity to central areas is described. In order to assess validity, the systems ability to measure PCO progression is assessed along with the visual significance of its final computerised scores. Reliability of the system is also assessed. RESULTS: The final system runs successfully and is simple to use. Analyses of PCO by the system show an ability to detect early progression of PCO as well as detection of visually significant PCO. Images with no clinical PCO produce very low scores in the analysis. Reliability of the system of analysis is shown to be satisfactory. CONCLUSION: This paper presents a system of PCO analysis that is evidence based, objective and clinically useful. Substantial evidence is provided for its validity and reliability

    OSCA: a comprehensive open-access system of analysis of posterior capsular opacification

    Get PDF
    BACKGROUND: This paper presents and tests a comprehensive computerised system of analysis of digital images of posterior capsule opacification (PCO). It updates and expands significantly on a previous presentation to include facilities for selecting user defined central areas and for registering and subsequent merging of images for artefact removal. Also, the program is compiled and thus eliminates the need for specialised additional software. The system is referred to in this paper as the open-access systematic capsule assessment (OSCA). The system is designed to be evidence based, objective and openly available, improving on current systems of analysis. METHODS: Principal features of the OSCA system of analysis are discussed. Flash artefacts are automatically located in two PCO images and the images merged to produce a composite free from these artefacts. For this to be possible the second image has to be manipulated with a registration technique to bring it into alignment with the first. Further image processing and analysis steps use a location-sensitive entropy based texture analysis of PCO. Validity of measuring PCO progression of the whole new system is assessed along with visual significance of scores. Reliability of the system is assessed. RESULTS: Analysis of PCO by the system shows ability to detect early progression of PCO, as well as detection of more visually significant PCO. Images with no clinical PCO produce very low scores in the analysis. Reliability of the system of analysis is demonstrated. CONCLUSION: This system of PCO analysis is evidence-based, objective and clinically useful. It incorporates flash detection and removal as well as location sensitive texture analysis. It provides features and benefits not previously available to most researchers or clinicians. Substantial evidence is provided for this system's validity and reliability

    DIA1R Is an X-Linked Gene Related to Deleted In Autism-1

    Get PDF
    Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik
    corecore