131 research outputs found
Mapping the disease-specific LupusQoL to the SF-6D
Purpose
To derive a mapping algorithm to predict SF-6D utility scores from the non-preference-based LupusQoL and test the performance of the developed algorithm on a separate independent validation data set.
Method
LupusQoL and SF-6D data were collected from 320 patients with systemic lupus erythematosus (SLE) attending routine rheumatology outpatient appointments at seven centres in the UK. Ordinary least squares (OLS) regression was used to estimate models of increasing complexity in order to predict individuals’ SF-6D utility scores from their responses to the LupusQoL questionnaire. Model performance was judged on predictive ability through the size and pattern of prediction errors generated. The performance of the selected model was externally validated on an independent data set containing 113 female SLE patients who had again completed both the LupusQoL and SF-36 questionnaires.
Results
Four of the eight LupusQoL domains (physical health, pain, emotional health, and fatigue) were selected as dependent variables in the final model. Overall model fit was good, with R2 0.7219, MAE 0.0557, and RMSE 0.0706 when applied to the estimation data set, and R2 0.7431, MAE 0.0528, and RMSE 0.0663 when applied to the validation sample.
Conclusion
This study provides a method by which health state utility values can be estimated from patient responses to the non-preference-based LupusQoL, generalisable beyond the data set upon which it was estimated. Despite concerns over the use of OLS to develop mapping algorithms, we find this method to be suitable in this case due to the normality of the SF-6D data
Designing and using incentives to support recruitment and retention in clinical trials:a scoping review and a checklist for design
BACKGROUND: Recruitment and retention of participants are both critical for the success of trials, yet both remain significant problems. The use of incentives to target participants and trial staff has been proposed as one solution. The effects of incentives are complex and depend upon how they are designed, but these complexities are often overlooked. In this paper, we used a scoping review to 'map' the literature, with two aims: to develop a checklist on the design and use of incentives to support recruitment and retention in trials; and to identify key research topics for the future.METHODS: The scoping review drew on the existing economic theory of incentives and a structured review of the literature on the use of incentives in three healthcare settings: trials, pay for performance, and health behaviour change. We identified the design issues that need to be considered when introducing an incentive scheme to improve recruitment and retention in trials. We then reviewed both the theoretical and empirical evidence relating to each of these design issues. We synthesised the findings into a checklist to guide the design of interventions using incentives.RESULTS: The issues to consider when designing an incentive system were summarised into an eight-question checklist. The checklist covers: the current incentives and barriers operating in the system; who the incentive should be directed towards; what the incentive should be linked to; the form of incentive; the incentive size; the structure of the incentive system; the timing and frequency of incentive payouts; and the potential unintended consequences. We concluded the section on each design aspect by highlighting the gaps in the current evidence base.CONCLUSIONS: Our findings highlight how complex the design of incentive systems can be, and how crucial each design choice is to overall effectiveness. The most appropriate design choice will differ according to context, and we have aimed to provide context-specific advice. Whilst all design issues warrant further research, evidence is most needed on incentives directed at recruiters, optimal incentive size, and testing of different incentive structures, particularly exploring repeat arrangements with recruiters.</p
A freely accessible, evidence based, objective system of analysis of posterior capsular opacification ; Evidence for its validity and reliability
BACKGROUND: The aim of this study was to develop a system of computerised analysis of digital images of posterior capsule opacification (PCO) that is evidence based, objective and freely available. The paper will present evidence for the reliability and validity of the developed system. METHODS: The system of PCO analysis was developed considering current published evidence on visual significance of PCO and additional investigative analysis of PCO images. Details of the image processing and analysis steps are discussed and a final system that measures an entropy score weighted toward proximity to central areas is described. In order to assess validity, the systems ability to measure PCO progression is assessed along with the visual significance of its final computerised scores. Reliability of the system is also assessed. RESULTS: The final system runs successfully and is simple to use. Analyses of PCO by the system show an ability to detect early progression of PCO as well as detection of visually significant PCO. Images with no clinical PCO produce very low scores in the analysis. Reliability of the system of analysis is shown to be satisfactory. CONCLUSION: This paper presents a system of PCO analysis that is evidence based, objective and clinically useful. Substantial evidence is provided for its validity and reliability
OSCA: a comprehensive open-access system of analysis of posterior capsular opacification
BACKGROUND: This paper presents and tests a comprehensive computerised system of analysis of digital images of posterior capsule opacification (PCO). It updates and expands significantly on a previous presentation to include facilities for selecting user defined central areas and for registering and subsequent merging of images for artefact removal. Also, the program is compiled and thus eliminates the need for specialised additional software. The system is referred to in this paper as the open-access systematic capsule assessment (OSCA). The system is designed to be evidence based, objective and openly available, improving on current systems of analysis. METHODS: Principal features of the OSCA system of analysis are discussed. Flash artefacts are automatically located in two PCO images and the images merged to produce a composite free from these artefacts. For this to be possible the second image has to be manipulated with a registration technique to bring it into alignment with the first. Further image processing and analysis steps use a location-sensitive entropy based texture analysis of PCO. Validity of measuring PCO progression of the whole new system is assessed along with visual significance of scores. Reliability of the system is assessed. RESULTS: Analysis of PCO by the system shows ability to detect early progression of PCO, as well as detection of more visually significant PCO. Images with no clinical PCO produce very low scores in the analysis. Reliability of the system of analysis is demonstrated. CONCLUSION: This system of PCO analysis is evidence-based, objective and clinically useful. It incorporates flash detection and removal as well as location sensitive texture analysis. It provides features and benefits not previously available to most researchers or clinicians. Substantial evidence is provided for this system's validity and reliability
Droplet printing reveals the importance of micron-scale structure for bacterial ecology
Bacteria often live in diverse communities where the spatial arrangement of strains and species is considered critical for their ecology. However, a test of this hypothesis requires manipulation at the fine scales at which spatial structure naturally occurs. Here we develop a droplet-based printing method to arrange bacterial genotypes across a sub-millimetre array. We print strains of the gut bacterium Escherichia coli that naturally compete with one another using protein toxins. Our experiments reveal that toxin-producing strains largely eliminate susceptible non-producers when genotypes are well-mixed. However, printing strains side-by-side creates an ecological refuge where susceptible strains can persist in large numbers. Moving to competitions between toxin producers reveals that spatial structure can make the difference between one strain winning and mutual destruction. Finally, we print different potential barriers between competing strains to understand how ecological refuges form, which shows that cells closest to a toxin producer mop up the toxin and protect their clonemates. Our work provides a method to generate customised bacterial communities with defined spatial distributions, and reveals that micron-scale changes in these distributions can drive major shifts in ecology
Charge Pair Interactions in Transmembrane Helices and Turn Propensity of the Connecting Sequence Promote Helical Hairpin Insertion
α-Helical hairpins, consisting of a pair of closely spaced transmembrane (TM) helices that are connected by a short interfacial turn, are the simplest structural motifs found in multi-spanning membrane proteins. In naturally occurring hairpins, the presence of polar residues is common and predicted to complicate membrane insertion. We postulate that the pre-packing process offsets any energetic cost of allocating polar and charged residues within the hydrophobic environment of biological membranes. Consistent with this idea, we provide here experimental evidence demonstrating that helical hairpin insertion into biological membranes can be driven by electrostatic interactions between closely separated, poorly hydrophobic sequences. Additionally, we observe that the integral hairpin can be stabilized by a short loop heavily populated by turn-promoting residues. We conclude that the combined effect of TM¿TM electrostatic interactions and tight turns plays an important role in generating the functional architecture of membrane proteins and propose that helical hairpin motifs can be acquired within the context of the Sec61 translocon at the early stages of membrane protein biosynthesis. Taken together, these data further underline the potential complexities involved in accurately predicting TM domains from primary structures
DIA1R Is an X-Linked Gene Related to Deleted In Autism-1
Background: Autism spectrum disorders (ASDs) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Methodology/Principal Findings: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62 % similar overall (28 % identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Conclusions/Significance: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-lik
- …