7 research outputs found

    Asynchronous food-web pathways could buffer the response of Serengeti predators to El Niño southern oscillation

    Get PDF
    Understanding how entire ecosystems maintain stability in the face of climatic and human disturbance is one of the most fundamental challenges in ecology. Theory suggests that a crucial factor determining the degree of ecosystem stability is simply the degree of synchrony with which different species in ecological food webs respond to environmental stochasticity. Ecosystems in which all food-web pathways are affected similarly by external disturbance should amplify variability in top carnivore abundance over time due to population interactions, whereas ecosystems in which a large fraction of pathways are nonresponsive or even inversely responsive to external disturbance will have more constant levels of abundance at upper trophic levels. To test the mechanism underlying this hypothesis, we used over half a century of demographic data for multiple species in the Serengeti (Tanzania) ecosystem to measure the degree of synchrony to variation imposed by an external environmental driver, the El Niño Southern Oscillation (ENSO). ENSO effects were mediated largely via changes in dry-season vs. wet-season rainfall and consequent changes in vegetation availability, propagating via bottom-up effects to higher levels of the Serengeti food web to influence herbivores, predators and parasites. Some species in the Serengeti food web responded to the influence of ENSO in opposite ways, whereas other species were insensitive to variation in ENSO. Although far from conclusive, our results suggest that a diffuse mixture of herbivore responses could help buffer top carnivores, such as Serengeti lions, from variability in climate. Future global climate changes that favor some pathways over others, however, could alter the effectiveness of such processes in the future

    The main herbivorous mammals and crocodile in the Greater Serengeti ecosystem

    No full text

    The main herbivorous mammals and crocodile in the Greater Serengeti ecosystem

    No full text

    Historical and future changes to the Serengeti ecosystem

    No full text

    Long-Term ecosystem dynamics in the Serengeti: lessons for conservation

    No full text
    Data from long-term ecological studies further understanding of ecosystem dynamics and can guide evidence-based management. In a quasi-natural experiment we examined long-term monitoring data on different components of the Serengeti-Mara Ecosystem to trace the effects of disturbances and thus to elucidate cause-and-effect connections between them. The long-term data illustrated the role of food limitation in population regulation in mammals, particularly in migratory wildebeest and nonmigratory buffalo. Predation limited populations of smaller resident ungulates and small carnivores. Abiotic events, such as droughts and floods, created disturbances that affected survivorship of ungulates and birds. Such disturbances showed feedbacks between biotic and abiotic realms. Interactions between elephants and their food allowed savanna and grassland communities to co-occur. With increased woodland vegetation, predators' capture of prey increased. Anthropogenic disturbances had direct (hunting) and indirect (transfer of disease to wildlife) effects. Slow and rapid changes and multiple ecosystem states became apparent only over several decades and involved events at different spatial scales. Conservation efforts should accommodate both infrequent and unpredictable events and long-term trends. Management should plan on the time scale of those events and should not aim to maintain the status quo. Systems can be self-regulating through food availability and predator-prey interactions; thus, culling may not be required. Ecosystems can occur in multiple states; thus, there may be no a priori need to maintain one natural state. Finally, conservation efforts outside protected areas must distinguish between natural change and direct human-induced change. Protected areas can act as ecological baselines in which human-induced change is kept to a minimum
    corecore