3 research outputs found

    Therapeutic potentials of Adenostemma lavenia (L.) O.Kuntze evidenced into an array of pharmacological effects and ligand-receptor interactions

    No full text
    This study constructed the phytochemical profiles of Adenostemma lavenia (L) methanol extract (MEAL) and investigated its anti-nociceptive, anti-diarrheal, antipyretic, thrombolytic and anthelmintic effects. The GC-MS characterized MEAL had undergone an in vivo antipyretic effect assayed on Swiss albino mice adopting the yeast-induced pyrexia model, antinociceptive activity tested following acetic acid-induced writhing and formalin-induced licking paw models, anti-diarrheal effect in castor oil-induced diarrhea, castor oil-induced enteropooling, and charcoal-induced intestinal transit tests, in vitro thrombolytic effect using clot-lysis model and anthelmintic effects assayed on Tubifex tubifex nematode. The MEAL biometabolites and associated proteins of target diseases were interacted with computational analysis. The MEAL showed a significant dose-dependent percentage of inhibition in acetic acid-induced writhing and formalin-induced paw licking displaying inhibition of 80.40% in acetic acid-induced writhing and 36.23% and 58.21% in the second phase of the formalin-induced model. The MEAL inhibition of 34.37%, 35.29%, and 42.95% in castor oil-induced diarrhea, castor oil-induced enteropooling, and charcoal-induced gastrointestinal motility, respectively. The MEAL significantly reduced yeast-induced pyrexia. Its biometabolites showed remarkable (−4.1 kcal/mol to 7.4 kcal/mol) binding affinity with the protein receptors. Caryophyllene and Cyclobarbital yielded the best binding scores in this research. Results suggest that pure compounds-based pharmacological investigations are necessary to affirm the therapeutic effects

    Virtual screenings of the bioactive constituents of tea, prickly chaff, catechu, lemon, black pepper, and synthetic compounds with the main protease (Mpro) and human angiotensin-converting enzyme 2 (ACE 2) of SARS-CoV-2

    No full text
    Abstract Background COVID-19 has mutation capability, and there are no specific drug therapies that are available to fight or inhibit the proteins of this virus. The present study aims to investigate the binding affinity of the bioactive and synthetic compounds with the main protease (Mpro) enzymes and angiotensin-converting enzyme 2 (ACE 2) by computational approach. PASS prediction, pharmacokinetics, and toxicological properties prediction studies were performed through the Google PASS prediction and Swiss ADME/T website. Besides, molecular docking studies were accomplished by BIOVIA Discovery Studio 2020, UCSF Chimera, and PyRx autodock vina. Results The docking scores were inferred and the selected compounds showed results varying from −3.2 to −9.8 (kcal/mol). Theaflavin scored the highest docking score to the 5REB, 6VW1, and 1R42 enzymes and showed the binding affinity as −6.3 kcal/mol, −9.8 kcal/mol, and −8.6 kcal/mol, respectively. Again, kaempferol showed the best binding affinity to the 7BQY (−7.1 kcal/mol) and 6Y2FB (−6.6 kcal/mol) enzymes. All the chemical constituents showed better probability in action in pass prediction analysis. Besides, no ligands (except theaflavin) have any conflict with Lipinski’s rules of five, which authorized the drug probability of these ligands. Conclusion Therefore, the selected compounds could be considered a potential herbal treatment source against SARS-CoV-2
    corecore