7 research outputs found

    Genetic Relationship, Virulence Factors, Drug Resistance Profile and Biofilm Formation Ability of Vibrio parahaemolyticus Isolated From Mussel

    Get PDF
    The objective of this study was to investigate the virulence factors, genetic relationship, antibiotic resistance profile and the biofilm formation ability of Vibrio parahaemolyticus isolates on shrimp and mussel surfaces at 30°C. In this study, eight (n = 8) V. parahaemolyticus isolated from mussel were examined. We used the polymerase chain reaction (PCR) to examine the distribution of different genes, and Repetitive Extragenic Palindromic-PCR (REP-PCR) to compare the genetic relationship. Disk diffusion technique was used to assess antibiotic and multiple-antibiotic resistance. The biofilm formation assay, and field emission scanning electron microscopy (FE-SEM) were used to evaluate biofilm formation ability. Transmission Electron Microscope (TEM) was used to observe the morphological structure of bacterial cell. Our results indicated that the biofilm-associated genes, 16S rRNA, toxR, and tdh, were present in all the tested V. parahaemolyticus isolates (n = 8). Approximately, 62.5% (5 isolates among 8 isolates) isolates showed strong multiple-antibiotic resistance index with an average value of 0.56. All isolates (n = 8) showed strong genetic relationship and significant biofilm formation ability on shrimp and mussel surfaces. This study demonstrated that the presence of virulence factors, high multiple antibiotic resistance index (MARI) values, and effective biofilm formation ability of V. parahaemolyticus isolates could be a great threat to human health and economic values in future. It was also suggested that a high resistance rate to antibiotic could be ineffective for treating V. parahaemolyticus infections. The continuous monitoring of V. parahaemolyticus antibiotic, molecular and biofilm characteristics is needed to increase seafood safety

    Recombinant Expression in <i>Bacillus megaterium</i> and Biochemical Characterization of Exo-Mannered Glycosyl Hydrolase Family 43 <i>α</i>-L-Arabinofuranosidase from the Korean Black Goat Rumen Metagenome

    No full text
    There is no doubt that ruminants have the capability to digest lignocellulosic compounds and to utilize them as an absorbable form of energy by tapping into enzymes produced by the microbial population in their rumens. Among the rumens of various ruminants, this study focused on Korean goat rumens because of their unique digestibility of lignocellulosic biomasses. Therefore, a novel Gene12 gene was screened and unmasked from the constructed rumen metagenomic library of a Korean black goat and expressed in a Bacillus megaterium system. The recombinant protein was distinguished as a novel α-L-arabinofuranosidase enzyme from glycosyl hydrolase family 43 (GH43) for its capability to hydrolyze the non-reducing end of α-1,5-L-arabinofuranose linkages in α-L-arabinofuranosyl groups. The enzyme can also break apart α-L-arabinofuranosidic linkages and act synergistically with other hemicellulolytic enzymes to release α-1,2- and α-1,3-L-arabinofuranosyl groups from L-arabinose-comprising polysaccharides. In silico, phylogenetic, and computational analyses proclaimed that the Gene12 gene encodes a novel carbohydrate-active enzyme possessing a V-shaped indentation of the GH43 catalytic and functional domain (carbohydrate-binding module 6). The recombinant Gene12 protein has shared 81% sequence homology with other members of the GH43 family. Enzymic synopses (optimal pH, temperatures, and stability studies) of the recombinant Gene12 enzyme and its substrate specificity (synthetic and natural substrates) profiling were considered. The recombinant Gene12 α-L-arabinofuranosidase works best at pH 6.0 and 40 °C, and it is stable at pH 4.0 to 7.0 at temperatures of 20 to 50 °C. Additionally, 5-blended β-sheets were identified through a tertiary (3D) structure analysis along with the high substrate specificity against p-nitrophenyl-D-arabinofuranoside (pNPA). The highest substrate specificity of pNPA for Gene12 α-L-arabinofuranosidase indicated its confirmation as an exo-type arabinofuronidase. The results thus propose using the Gene12 protein as an exo-mannered GH43 α-L-arabinofuranosidase (EC 3.2.1.55) enzyme

    Isolation and characterization of multidrug-resistant Salmonella-specific bacteriophages and their antibacterial efficiency in chicken breast

    No full text
    ABSTRACT: The use of phages as biocontrol agents against antibiotic-resistant strains of Salmonella spp. is gaining attention. This study aimed to isolate lytic bacteriophages specific for multidrug-resistant Salmonella enterica serovars Typhimurium; it also evaluated the bactericidal effect of isolated phages (STP-1, STP-2, STP-3, and STP-4) from sewage sample against S. Typhimurium as host strains. Moreover, a current study evaluated the efficacy of a bacteriophage cocktail against S. Typhimurium cocktail in chicken breast meat. The 4 phages were classified under the Caudoviricetes class by morphology characterization. On host range testing, they exhibited lytic activities against S. Typhimurium, S. Enteritidis, and S. Thompson. In the stability test, the phages exhibited resistance to heat (above 70°C for 1 h) and pH (strongly alkaline for 24 h). Additionally, the phages had comparable adsorption rates (approximately 80% adsorption in under 5 min). Additionally, the latent periods ranged from 30 to 50 min, with respective burst sizes of 31, 218, 197, and 218 PFU/CFU. In vitro, bacterial challenge demonstrated that at a multiplicity of infection (MOI) of 10, each phage consistently inhibited S. Typhimurium growth at 37°C for 24 h. In the food test, the phage cocktail (MOI = 1,000) reduced S. Typhimurium in artificially contaminated chicken breast meat stored at 4°C by 0.9 and 1.2 log CFU/g after 1 and 7 d, respectively. The results point toward a promising avenue for addressing the challenge of multidrug-resistant S. Typhimurium in the food industry through the use of recently discovered phages. Notably, the exploration of phage cocktails holds significant potential for combating S. Typhimurium in chicken breast products in the times ahead

    Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review

    No full text
    Green synthesis of silver nanoparticles (AgNPs) using biological resources is the most facile, economical, rapid, and environmentally friendly method that mitigates the drawbacks of chemical and physical methods. Various biological resources such as plants and their different parts, bacteria, fungi, algae, etc. could be utilized for the green synthesis of bioactive AgNPs. In recent years, several green approaches for non-toxic, rapid, and facile synthesis of AgNPs using biological resources have been reported. Plant extract contains various biomolecules, including flavonoids, terpenoids, alkaloids, phenolic compounds, and vitamins that act as reducing and capping agents during the biosynthesis process. Similarly, microorganisms produce different primary and secondary metabolites that play a crucial role as reducing and capping agents during synthesis. Biosynthesized AgNPs have gained significant attention from the researchers because of their potential applications in different fields of biomedical science. The widest application of AgNPs is their bactericidal activity. Due to the emergence of multidrug-resistant microorganisms, researchers are exploring the therapeutic abilities of AgNPs as potential antibacterial agents. Already, various reports have suggested that biosynthesized AgNPs have exhibited significant antibacterial action against numerous human pathogens. Because of their small size and large surface area, AgNPs have the ability to easily penetrate bacterial cell walls, damage cell membranes, produce reactive oxygen species, and interfere with DNA replication as well as protein synthesis, and result in cell death. This paper provides an overview of the green, facile, and rapid synthesis of AgNPs using biological resources and antibacterial use of biosynthesized AgNPs, highlighting their antibacterial mechanisms

    Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review

    No full text
    Biosynthesized metal nanoparticles, especially silver and gold nanoparticles, and their conjugates with biopolymers have immense potential in various fields of science due to their enormous applications, including biomedical applications. Polymeric nanoparticles are particles of small sizes from 1 nm to 1000 nm. Among different polymeric nanoparticles, chitosan-coated silver and gold nanoparticles have gained significant interest from researchers due to their various biomedical applications, such as anti-cancer, antibacterial, antiviral, antifungal, anti-inflammatory technologies, as well as targeted drug delivery, etc. Multidrug-resistant pathogenic bacteria have become a serious threat to public health day by day. Novel, effective, and safe antibacterial agents are required to control these multidrug-resistant pathogenic microorganisms. Chitosan-coated silver and gold nanoparticles could be effective and safe agents for controlling these pathogens. It is proven that both chitosan and silver or gold nanoparticles have strong antibacterial activity. By the conjugation of biopolymer chitosan with silver or gold nanoparticles, the stability and antibacterial efficacy against multidrug-resistant pathogenic bacteria will be increased significantly, as well as their toxicity in humans being decreased. In recent years, chitosan-coated silver and gold nanoparticles have been increasingly investigated due to their potential applications in nanomedicine. This review discusses the biologically facile, rapid, and ecofriendly synthesis of chitosan-coated silver and gold nanoparticles; their characterization; and potential antibacterial applications against multidrug-resistant pathogenic bacteria
    corecore