58 research outputs found

    Restoration of tryptophan hydroxylase functions and serotonin content in the Atlantic croaker hypothalamus by antioxidant treatment during hypoxic stress

    Get PDF
    Antioxidants are prototypical scavengers of oxygen-free radicals and have been shown to prevent neuroendocrine dysfunction in vertebrates during oxidative stress. In the present study, we investigated whether antioxidant treatment can reverse hypoxia-induced down-regulation of hypothalamic tryptophan hydroxylase (TPH) and serotonergic functions in Atlantic croaker. Hypothalamic neuronal contents of TPH-1 and TPH-2 proteins, serotonin (5-hydroxytryptamine, 5-HT) and its precursor, 5-hydroxytryptophan (5-HTP) as well as hypothalamic TPH-1 and TPH-2 mRNA expression and TPH activity were measured in croaker after exposure to hypoxia and treatment with pharmacological agents. Multiple injections of N-ethylmaleimide, a sulfhydryl alkylating agent, caused comparable decreases in hypothalamic TPHs functions and 5-HT contents to that induced by hypoxia exposure (dissolved oxygen: 1.7 mg/L for 4 weeks) which were partially restored by repeated injections with a nitric oxide synthase (NOS)-inhibitor and/or vitamin E. Double-labeled immunohistochemical results showed that TPHs and 5-HT neurons were co-expressed with neuronal NOS (nNOS, a neuroenzyme) that catalyzes the production of nitric oxide, a free radical, in hypothalamic neurons. These results suggest that hypoxia-induced impairment of TPH and serotonergic functions are mediated by nNOS and involve the generation of free radicals and a decrease in the antioxidant status. This study provides, to our knowledge, the first evidence of a protective role for an antioxidant in maintaining neural TPHs functions and 5-HT regulation in an aquatic vertebrate during hypoxic stress

    Unification of Secret Key Generation and Wiretap Channel Transmission

    Full text link
    This paper presents further insights into a recently developed round-trip communication scheme called ``Secret-message Transmission by Echoing Encrypted Probes (STEEP)''. A legitimate wireless channel between a multi-antenna user (Alice) and a single-antenna user (Bob) in the presence of a multi-antenna eavesdropper (Eve) is focused on. STEEP does not require full-duplex, channel reciprocity or Eve's channel state information, but is able to yield a positive secrecy rate in bits per channel use between Alice and Bob in every channel coherence period as long as Eve's receive channel is not noiseless. This secrecy rate does not diminish as coherence time increases. Various statistical behaviors of STEEP's secrecy capacity due to random channel fading are also illustrated.Comment: This paper has been accepted for presentation at IEEE ICC 202

    Molecular cloning and characterization of two ARNT (ARNT-1 and ARNT-2) genes in Atlantic croaker and their expression during coexposure to hypoxia and PCB77

    Get PDF
    Aryl hydrocarbon receptor nuclear translocator (ARNT) is an important transcriptions factor that binds/coactivates drug-metabolizing genes in vertebrates. In this study, we report the cloning and characterization of two ARNT (ARNT-1 and ARNT-2) genes and their mRNA and protein expression in liver tissues of Atlantic croaker after co-exposure to hypoxia and 3,3\u27,4,4\u27-tetrachlorobiphenyl (PCB77). The full-length croaker ARNT-1 and ARNT-2 genes encode proteins of 537 and 530 amino acids, respectively, and are highly homologous to ARNT-1 and ARNT-2 genes of other vertebrates. ARNT mRNAs are ubiquitously expressed in all tissues. Hypoxia (dissolved oxygen: 1.7 mg/L) exposure (1-4 weeks) did not affect hepatic ARNTs mRNA levels. Dietary PCB77 treatment (2 and 8 μg/g body weight/day for 4 weeks) caused marked increases in ARNTs mRNA and protein levels in normoxic fish. However, coexposure to hypoxia and PCB77 for 4 weeks significantly blunted the increase in ARNTs mRNA and protein levels in response to PCB77 exposure. These results suggest that ARNT activity and functions induced by exposure to PCB aryl hydrocarbon receptor (AhR) agonists could be compromised in croaker inhabiting hypoxic coastal regions

    Molecular Characterization and Expression of Cytochrome P450 Aromatase in Atlantic Croaker Brain: Regulation by Antioxidant Status and Nitric Oxide Synthase During Hypoxia Stress

    Get PDF
    We have previously shown that nitric oxide synthase (NOS, an enzyme) is significantly increased during hypoxic stress in Atlantic croaker brains and modulated by an antioxidant (AOX). However, the influence of NOS and AOX on cytochrome P450 aromatase (AROM, CYP19a1, an enzyme) activity on vertebrate brains during hypoxic stress is largely unknown. In this study, we characterized brain AROM (bAROM, CYP19a1b) cDNA in croaker and examined the interactive effects of hypoxia and a NOS-inhibitor or AOX on AROM activity. The amino acid sequence of croaker bAROM cDNA is highly homologous (76–80%) to other marine teleost bAROM cDNAs. Both real-time PCR and Northern blot analyses showed that bAROM transcript (size: ∼2.8 kb) is highly expressed in the preoptic-anterior hypothalamus (POAH). Hypoxia exposure (dissolved oxygen, DO: 1.7 mg/L for 4 weeks) caused significant decreases in hypothalamic AROM activity, bAROM mRNA and protein expressions. Hypothalamic AROM activity and mRNA levels were also decreased by pharmacological treatment with N-ethylmaleimide (NEM, an alkylating drug that modifies sulfhydryl groups) of fish exposed to normoxic (DO: ∼6.5 mg/L) conditions. On the other hand, treatments with Nω-nitro-L-arginine methyl ester (NAME, a competitive NOS-inhibitor) or vitamin-E (Vit-E, a powerful AOX) prevented the downregulation of hypothalamic AROM activity and mRNA levels in hypoxic fish. Moreover, NAME and Vit-E treatments also restored gonadal growth in hypoxic fish. Double-labeled immunohistochemistry results showed that AROM and NOS proteins are co-expressed with NADPH oxidase (generates superoxide anion) in the POAH. Collectively, these results suggest that the hypoxia-induced downregulation of AROM activity in teleost brains is influenced by neuronal NOS activity and AOX status. The present study provides, to the best of our knowledge, the first evidence of restoration of AROM levels in vertebrate brains by a competitive NOS-inhibitor and potent AOX during hypoxic stress

    Secure Degree of Freedom of Wireless Networks Using Collaborative Pilots

    Full text link
    A wireless network of full-duplex nodes/users, using anti-eavesdropping channel estimation (ANECE) based on collaborative pilots, can yield a positive secure degree-of-freedom (SDoF) regardless of the number of antennas an eavesdropper may have. This paper presents novel results on SDoF of ANECE by analyzing secret-key capacity (SKC) of each pair of nodes in a network of multiple collaborative nodes per channel coherence period. Each transmission session of ANECE has two phases: phase 1 is used for pilots, and phase 2 is used for random symbols. This results in two parts of SDoF of ANECE. Both lower and upper bounds on the SDoF of ANECE for any number of users are shown, and the conditions for the two bounds to meet are given. This leads to important discoveries, including: a) The phase-1 SDoF is the same for both multi-user ANECE and pair-wise ANECE while the former may require only a fraction of the number of time slots needed by the latter; b) For a three-user network, the phase-2 SDoF of all-user ANECE is generally larger than that of pair-wise ANECE; c) For a two-user network, a modified ANECE deploying square-shaped nonsingular pilot matrices yields a higher total SDoF than the original ANECE. The multi-user ANECE and the modified two-user ANECE shown in this paper appear to be the best full-duplex schemes known today in terms of SDoF subject to each node using a given number of antennas for both transmitting and receiving

    Effects of elevated temperature on 8-OHdG expression in the American oyster (Crassostrea virginica): Induction of oxidative stress biomarkers, cellular apoptosis, DNA damage and γH2AX signaling pathways

    Get PDF
    Global temperature is increasing due to anthropogenic activities and the effects of elevated temperature on DNA lesions are not well documented in marine organisms. The American oyster (Crassostrea virginica, an edible and commercially important marine mollusk) is an ideal shellfish species to study oxidative DNA lesions during heat stress. In this study, we examined the effects of elevated temperatures (24, 28, and 32 °C for one-week exposure) on heat shock protein-70 (HSP70, a biomarker of heat stress), 8-hydroxy-2’-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), γ-histone family member X (γH2AX, a molecular biomarker of DNA damage), caspase-3 (CAS-3, a key enzyme of apoptotic pathway) and Bcl-2-associated X (BAX, an apoptosis regulator) protein and/or mRNA expressions in the gills of American oysters. Immunohistochemical and qRT-PCR results showed that HSP70, 8-OHdG, dsDNA, and γH2AX expressions in gills were significantly increased at high temperatures (28 and 32 °C) compared with control (24°C). In situ TUNEL analysis showed that the apoptotic cells in gill tissues were increased in heat-exposed oysters. Interestingly, the enhanced apoptotic cells were associated with increased CAS-3 and BAX mRNA and/or protein expressions, along with 8-OHdG levels in gills after heat exposure. Moreover, the extrapallial (EP) fluid (i.e., extracellular body fluid) protein concentrations were lower; however, the EP glucose levels were higher in heat-exposed oysters. Taken together, these results suggest that heat shock-driven oxidative stress alters extracellular body fluid conditions and induces cellular apoptosis and DNA damage, which may lead to increased 8-OHdG levels in cells/tissues in oysters

    Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: A critical review on the challenges and limitations of eDNA metabarcoding

    Get PDF
    The world is struggling to solve a devastating biodiversity loss that not only affects the extinction of treasured species and irreplaceable genetic variation, but also jeopardizes the food production, health, and safety of people. All initiatives aimed to conserve biodiversity rely heavily on the monitoring of both species and populations to get accurate spatial patterns and overall population assessments. Conventional monitoring techniques, such as visual surveys and counting individuals, are problematic due to challenges in identifying cryptic species or immature life stages. Environmental DNA (eDNA) is a relatively new technology that has the potential to be a faster, non-invasive, and cost-effective tool for monitoring biodiversity, conservation, and management practices. eDNA has been extracted from materials that are both ancient and present, and its applications range from the identification of individual species to the study of entire ecosystems. In the past few years, there has been a substantial increase in the usage of eDNA in research pertaining to ecological preservation and conservation. However, several technological problems still need to be solved. To reduce the number of false positives and/or false negatives produced by current eDNA technologies, it is necessary to improve and optimize calibration and validation at every stage of the procedure. There is a significant need for greater information about the physical and ecological constraints on eDNA use, as well as its synthesis, current state, expected lifespan, and potential modes of movement. Due to the widespread use of eDNA research, it is also essential to assess the extent and breadth of these studies. In this article, we critically reviewed the primary applications of eDNA in subterranean and aquatic invasive species. Through this review, readers can better understand the challenges and limitations of eDNA metabarcoding

    Neuropharmacological activity of the crude ethanolic extract of Syzygium aromaticum flowering bud

    Get PDF
    Backgroud: Present study was designed to assess the possibility of in-vivo neuropharmacological effects of the ethanolic extract of Syzygium aromaticum flowering buds by using behavioral models of mice.Methods: Anxiolytic effects of the extract were assessed using open field test (OFT), hole cross test (HCT), elevated plus maze (EPM), and hole board test (HBT) respectively; while antidepressant properties were determined using forced swimming test (FST), and tail suspension test (TST). Finally thiopental sodium (TS)-induced sleeping time test helped us to evaluate the sedative-hypnotic potential of the extract.Results: In OFT and HCT, the movement of the mice decreased significantly (*p<0.005) for the extract treated groups when compare to control. This decrease indicates the suppression of locomotor activities of mice (from 1st-5th observation periods). Moreover, the increase of the spending time in EPM open arm, and head dipping in HBT endorsed the anxiolytic-like behavior of the extract. In FST and TST, S. aromaticum extract significantly (*p<0.05, **p<0.001) reduced the immobility time of the mice. Approx. 29% and 34% reduction of the immobility time were found in FST for 250 mg/kg, and 500 mg/kg b.w. doses respectively, which clearly indicates the presence of the antidepressant compounds in extract. Finally, TS-induced sleeping time test confirmed the potency of the sedative response of the extract (sleeping duration were 45.4±2.6 minutes for control, whereas 87.0±1.79 minutes for 500 mg/kg b.w. extract treated group). The observed neurological response may be due to binding of any phytoconstituent with gamma-amino-butyric acid (GABAA) or benzodiazepine (BZD) receptors.Conclusion: Our study results suggest that the ethanolic extract of S. aromaticum possess remarkable sedative, antidepressant and anxiolytic activities with a demand of further investigation for the drug development program

    Development and assessment of an environmental DNA (eDNA) assay for a cryptic Siren (Amphibia: Sirenidae)

    Get PDF
    Environmental DNA (eDNA) assays have become a major aspect of surveys for aquatic organisms in the past decade. These methods are highly sensitive, making them well-suited for monitoring rare and cryptic species. Current efforts to study the Rio Grande Siren in southern Texas have been hampered due to the cryptic nature of these aquatic salamanders. Arid conditions further add to the difficulty in studying this species, as many water bodies they inhabit are ephemeral, sometimes constraining sampling efforts to a short window after heavy rain. Additionally, sirens are known to cease activity and reside underground when ponds begin to dry or as water temperatures increase. Conventional sampling efforts require extensive trap-hours to be effective, which is not always possible within the required sampling window. This study presents the development of a novel eDNA assay technique for this elusive species using conventional PCR and Sanger sequencing and compares eDNA sampling results with simultaneous trapping at multiple sites to assess the relative effectiveness of the procedure. Rio Grande Siren detection via eDNA sampling was significantly higher at all sites compared to trapping, confirming the utility of this assay for species detection. This methodology gives promise for future work assessing the distribution and status of the Rio Grande Siren and has potential for use on other southern Texas amphibians

    Modeling the Population Effects of Hypoxia on Atlantic Croaker (Micropogonias undulatus) in the Northwestern Gulf of Mexico: Part 2—Realistic Hypoxia and Eutrophication

    Get PDF
    Quantifying the population-level effects of hypoxia on coastal fish species has been challenging. In the companion paper (part 1), we described an individual-based population model (IBM) for Atlantic croaker in the northwestern Gulf of Mexico (NWGOM) designed to quantify the long-term population responses to low dissolved oxygen (DO) concentrations during the summer. Here in part 2, we replace the idealized hypoxia conditions with realistic DO concentrations generated from a 3-dimensional water quality model. Three years were used and randomly arranged into a time series based on the historical occurrence of mild, intermediate, and severe hypoxia year types.We also used another water quality model to generate multipliers of the chlorophyll concentrations to reflect that croaker food can be correlated to the severity of hypoxia. Simulations used 100 years under normoxia and hypoxia conditions to examine croaker population responses to the following: (1) hypoxia with food uncoupled and coupled to the severity of hypoxia, (2) hypoxia reducing benthos due to direct mortality, (3) how much hypoxia would need to be reduced to offset decreased croaker food expected under 25 and 50% reduction in nutrient loadings, and (4) key assumptions about avoidance movement. Direct mortality on benthos had no effect on long-term simulated croaker abundance, and the effect of hypoxia (about a 25% reduction in abundance) was consistent whether chlorophyll (food) varied with hypoxia or not. Reductions in hypoxia needed with a 25% reduction in nutrient loadings to result in minimal loss of croaker is feasible, and the croaker population will likely do as well as possible (approach abundance under normoxia) under the 50% reduction in nutrient loadings. We conclude with a discussion of why we consider our simulation-based estimates of hypoxia causing a 25% reduction the long-term population abundance of croaker in the NWGOM to be realistic and robust
    • …
    corecore