38 research outputs found

    Quality evaluation and shelf life analysis of fruit juice cocktail containing Mango (Mangifera indica) and Pineapple (Ananas comosus)

    No full text
    The development of the innovative flavored juices by coalescing two or more distinct types of fruits is encouraged by the tremendous expansion of the juice industry. Fruit juice cocktails frequently contain high nutritional content as well as organoleptic features such as color, flavor, taste, and overall attractiveness of various fruits. The use of different heat treatments and storage temperatures on single juice has previously been extensively researched, however, only a limited study has been performed on a juice cocktail. Therefore, the effect of pasteurization temperature (60 °C and 90 °C) and storage temperature (4 °C and 25 °C) on physicochemical, microbial, and sensory properties of pineapple-mango juice cocktail was investigated. Standard procedures were used to determine physicochemical, microbiological, and sensory characteristics. The results of the study demonstrated a slight increase in TSS, acidity, and cloud stability during storage, while a gradual decrease in vitamin C, pH, total sugars, and Lovibond color. The S4 sample that was pasteurized at 60 °C for 20 min and maintained at 4°C storage temperature retained more vitamin C, acidity, and total sugar than the other samples. According to the microbiological data, the total viable count in the fruit juice cocktail samples varied from 3.42 × 102 to 8.5 × 107, and after two months of storage, the bacterial load in sample S4 increased from 3.52 × 102 to 5.5 × 103. The sensory evaluations revealed that all of the samples were widely accepted, with sample S4 having the greatest overall acceptance owing to the cocktails color, flavor, and taste. Therefore, this study demonstrates that perishable fruits may be turned into appealing juice cocktails, increasing the sensory characteristics and hence the products escalation value. These findings also promote the development of a healthy and nutritious, fruit-based juice cocktail

    Consequences of catastrophic cyclone Amphan in the human-induced coastal plain ecosystems of Bangladesh

    No full text
    The Amphan, a super cyclone, hit the Bangladesh coast on May 20, 2020. This study conducted on the worst calamity-affected areas of southwestern coast of Bangladesh through field investigation, and Modification of Normalized Difference Water Index, and Normalized Difference Vegetation Index analysis. The study disclosed that most of the areas were submerged by tidal saline water during the cyclone. The people in the areas were taken refuge on embankments and in cyclone shelters. The vegetation was fully or partially damaged/dead due to undesired inundation. Domestic animals are completely absent in the area due to the unavailability of freshwater

    First mirror test in JET for ITER: Complete overview after three ILW campaigns

    No full text
    The First Mirror Test for ITER has been carried out in JET with mirrors exposed during: (i) the third ILW campaign (ILW-3, 2015-2016, 23.33 h plasma) and (ii) all three campaigns, i.e. ILW-1 to ILW-3: 2011-2016, 63,52 h in total. All mirrors from main chamber wall show no significant changes of the total reflectivity from the initial value and the diffuse reflectivity does not exceed 3% in the spectral range above 500 nm. The modified layer on surface has very small amount of impurities such as D, Be, C, N, O and Ni. All mirrors from the divertor (inner, outer, base under the bulk W tile) lost reflectivity by 20-80% due to the beryllium-rich deposition also containing D, C, N, O, Ni and W. In the inner divertor N reaches 5 x 10(17) cm(-2), W is up to 4.3 x 10(17) cm(-2), while the content of Ni is the greatest in the outer divertor: 3.8 x 10(17) cm(-2). Oxygen-18 used as the tracer in experiments at the end of ILW-3 has been detected at the level of 1.1 x 10(16) cm(-2). The thickness of deposited layer is in the range of 90 nm to 900 nm. The layer growth rate in the base (2.7 pm s(-1)) and inner divertor is proportional to the exposure time when a single campaign and all three are compared. In a few cases, on mirrors located at the cassette mouth, flaking of deposits and erosion occurred

    Erosion, screening, and migration of tungsten in the JET divertor

    No full text
    The erosion of tungsten (W), induced by the bombardment of plasma and impurity particles, determines the lifetime of plasma-facing components as well as impacting on plasma performance by the influx of W into the confined region. The screening of W by the divertor and the transport of W in the plasma determines largely the W content in the plasma core, but the W source strength itself has a vital impact on this process. The JET tokamak experiment provides access to a large set of W erosion-determining parameters and permits a detailed description of the W source in the divertor closest to the ITER one: (i) effective sputtering yields and fluxes as function of impact energy of intrinsic (Be, C) and extrinsic (Ne, N) impurities as well as hydrogenic isotopes (H, D) are determined and predictions for the tritium (T) isotope are made. This includes the quantification of intra- and inter-edge localised mode (ELM) contributions to the total W source in H-mode plasmas which vary owing to the complex flux compositions and energy distributions in the corresponding phases. The sputtering threshold behaviour and the spectroscopic composition analysis provides an insight in the dominating species and plasma phases causing W erosion. (ii) The interplay between the net and gross W erosion source is discussed considering (prompt) re-deposition, thus, the immediate return of W ions back to the surface due to their large Larmor radius, and surface roughness, thus, the difference between smooth bulk-W and rough W-coating components used in the JET divertor. Both effects impact on the balance equation of local W erosion and deposition. (iii) Post-mortem analysis reveals the net erosion/deposition pattern and the W migration paths over long periods of plasma operation identifying the net W transport to remote areas. This W transport is related to the divertor plasma regime, e.g. attached operation with high impact energies of impinging particles or detached operation, as well as to the applied magnetic configuration in the divertor, e.g. close divertor with good geometrical screening of W or open divertor configuration with poor screening.JET equipped with the ITER-like wall (ILW) provided unique access to the net W erosion rate within a series of 151 subsequent H-mode discharges (magnetic field: B-t = 2.0 T, plasma current: I-p = 2.0 MA, auxiliary power P-aux = 12 MW) in one magnetic configuration accumulating 900 s of plasma with particle fluences in the range of 5-6 x 10(26) D+ m(-2) in the semi-detached inner and attached outer divertor leg. The comparison of W spectroscopy in the intra-ELM and inter-ELM phases with post-mortem analysis of W marker tiles provides a set of gross and net W erosion values at the outer target plate. ERO code simulations are applied to both divertor leg conditions and reproduce the erosion/deposition pattern as well as confirm the high experimentally observed prompt W re-deposition factors of more than 95% in the intra- and inter-ELM phase of the unseeded deuterium H-mode plasma. Conclusions to the expected divertor conditions in ITER as well as to the JET operation in the DT plasma mixture are drawn on basis of this unique benchmark experiment

    Beryllium melting and erosion on the upper dump plates in JET during three ITER-like wall campaigns

    No full text
    Data on erosion and melting of beryllium upper limiter tiles, so-called dump plates (DP), are presented for all three campaigns in the JET tokamak with the ITER-like wall. High-resolution images of the upper wall of JET show clear signs of flash melting on the ridge of the roofshaped tiles. The melt layers move in the poloidal direction from the inboard to the outboard tile, ending on the last DP tile with an upward going waterfall-like melt structure. Melting was caused mainly by unmitigated plasma disruptions. During three ILW campaigns, around 15% of all 12376 plasma pulses were catalogued as disruptions. Thermocouple data from the upper dump plates tiles showed a reduction in energy delivered by disruptions with fewer extreme events in the third campaign, ILW-3, in comparison to ILW-1 and ILW-2. The total Be erosion assessed via precision weighing of tiles retrieved from JET during shutdowns indicated the increasing mass loss across campaigns of up to 0.6 g from a single tile. The mass of splashed melted Be on the upper walls was also estimated using the high-resolution images of wall components taken after each campaign. The results agree with the total material loss estimated by tile weighing (similar to 130 g). Morphological and structural analysis performed on Be melt layers revealed a multilayer structure of re-solidified material composed mainly of Be and BeO with some heavy metal impurities Ni, Fe, W. IBA analysis performed across the affected tile ridge in both poloidal and toroidal direction revealed a low D concentration, in the range 1-4 x 10(17) D atoms cm(-2)

    EDGE2D-EIRENE simulations of the influence of isotope effects and anomalous transport coefficients on near scrape-off layer radial electric field

    No full text
    EDGE2D-EIRENE (the 'code') simulations show that radial electric field, Er, in the near scrape-off layer (SOL) of tokamaks can have large variations leading to a strong local E x B shear greatly exceeding that in the core region. This was pointed out in simulations of JET plasmas with varying divertor geometry, where the magnetic configuration with larger predicted near SOL E-r was found to have lower H-mode power threshold, suggesting that turbulence suppression in the SOL by local E. x. B shear can be a player in the L-H transition physics (Delabie et al 2015 42nd EPS Conf. on Plasma Physics (Lisbon, Portugal, 22-26 June 2015) paper O3.113 (http://ocs.ciemat.es/EPS2015PAP/pdf/O3.113.pdf), Chankin et al 2017 Nucl. Mater. Energy 12 273). Further code modeling of JET plasmas by changing hydrogen isotopes (H-D-T) showed that the magnitude of the near SOL E-r is lower in H cases in which the H-mode threshold power is higher (Chankin et al 2017 Plasma Phys. Control. Fusion 59 045012). From the experiment it is also known that hydrogen plasmas have poorer particle and energy confinement than deuterium plasmas, consistent with the code simulation results showing larger particle diffusion coefficients at the plasma edge, including SOL, in hydrogen plasmas (Maggi et al 2018 Plasma Phys. Control. Fusion 60 014045). All these experimental observations and code results support the hypothesis that the near SOL E x B shear can have an impact on the plasma confinement. The present work analyzes neutral ionization patterns of JET plasmas with different hydrogen isotopes in L-mode cases with fixed input power and gas puffing rate, and its impact on target electron temperature, T-e, and SOL E-r. The possibility of a self-feeding mechanism for the increase in the SOL E-r via the interplay between poloidal E x B drift and target T-e is discussed. It is also shown that reducing anomalous turbulent transport coefficients, particle diffusion and electron and ion heat conductivities, leads to higher peak target T-e and larger E-r, suggesting the possibility of a positive feedback loop, under an implicitly made assumption that the E x B shear in the SOL is capable of suppressing turbulence

    A power-balance model of the density limit in fusion plasmas: application to the L-mode tokamak

    No full text
    A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald- like scaling, alpha I-p(8/9), for the RFP and the ohmic tokamak, a mixed scaling, alpha (PIp4/9)-I-4/9, for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, arc taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit

    Investigation of deuterium trapping and release in the JET divertor during the third ILW campaign using TDS

    No full text
    Selected set of samples from JET ITER-Like Wall (JET-ILW) divertor tiles exposed in 2015-2016 has been analysed using Thermal Desorption Spectrometry (TDS). The deuterium (D) amounts obtained with TDS were compared with Nuclear Reaction Analysis (NRA). The highest amount of D was found on the top part of inner divertor which has regions with the thickest deposited layers as for divertor tiles removed in 2014. This area resides deep in the scrape-off layer and plasma configurations for the second (ILW-2, 2013-2014) and the third (ILW-3, 2015-2016) JET-ILW campaigns were similar. Agreement between TDS and NRA is good on the apron of Tile 1 and on the upper vertical region whereas on the lower vertical region of Tile 1 the NRA results are clearly smaller than the TDS results. Inner divertor Tile 3 has somewhat less D than Tiles 0 and 1, and the D amount decreases towards the lower part of the tile. The D retention at the divertor inner and outer corner regions is not symmetric as there is more D retention poloidally at the inner than at the outer divertor corner. In most cases the TDS spectra for the ILW-3 samples are different from the corresponding ILW-2 spectra because HD and D-2 release occurs at higher temperatures than from the ILW-2 samples indicating that the low energy traps have been emptied during the plasma operations and that D is either in the energetically deep traps or located deeper in the sample

    Long-lived coupled peeling ballooning modes preceding ELMs on JET

    No full text
    In some JET discharges, type-I edge localised modes (ELMs) are preceded by a class of low-frequency oscillations (Perez et al 2004 Nucl. Fusion 44 609). While in many cases the ELM is triggered during the growth phase of this oscillation, it is also observed that this type of oscillation can saturate and last for several tens of ms until an ELM occurs. In order to identify the nature of these modes, a wide pre-ELM oscillation database, including detailed pedestal profile information, has been assembled and analysed in terms of MHD stability parameters. The existence domain of these pre-ELM oscillations and the statistical distribution of toroidal mode numbers (n) up to n = 16 have been mapped in ballooning alpha (alpha(ball)) and either edge current density (J(edge)) or pedestal collisionality (nu(ee,ped)*) coordinates and compared to linear MHD stability predictions. The pre-ELM oscillations are reliably observed when the J/alpha ratio is high enough for the pedestal to access the coupled peeling-ballooning (PB) domain (aka stability nose). Conversely, when the pedestal is found to be in or near the high-n ballooning domain (which is at low J/alpha ratio), ELMs are usually triggered promptly, i.e. with no detectable pre-ELM oscillations, or with pre-ELM oscillations only observable on ECE whose n appears to be too high to be resolved by the magnetics. Individual discharges can sometimes exhibit a fairly wide range of pre-ELM mode numbers, but for a wider database, the statistical n-number domains are found to be well ordered along the J - alpha stability boundary and behave as expected from PB theory: the higher the J/alpha ratio, the lower the mode's measured n tends to be. Within the measurement uncertainties, the measured n is usually found to be compatible with the most unstable n predicted by the linear stability code MISHKA1. These results confirm the earlier hypothesis that these modes are coupled peeling-ballooning modes, and extend and generalise to higher-mode numbers the work by Huysmans et al (1998 Nucl. Fusion 38 179), who identified the lowest n modes as pure external kink modes. Since the destabilisation of PB modes is widely accepted to give rise to ELMs, the mode saturation and delayed ELM triggering that is sometimes observed is rather unexpected. Possibilities to reconcile the extended lifetime of these modes with current ELM models are briefly discussed, but will require further investigation

    Diagnostic of fast-ion energy spectra and densities in magnetized plasmas

    No full text
    The measurement of the energy spectra and densities of alpha-particles and other fast ions are part of the ITER measurement requirements, highlighting the importance of energy-resolved energetic-particle measurements for the mission of ITER. However, it has been found in recent years that the velocity-space interrogation regions of the foreseen energetic-particle diagnostics do not allow these measurements directly. We will demonstrate this for gamma-ray spectroscopy (GRS), collective Thomson scattering (CTS), neutron emission spectroscopy and fast-ion D-alpha spectroscopy by invoking energy and momentum conservation in each case, highlighting analogies and differences between the different diagnostic velocity-space sensitivities. Nevertheless, energy spectra and densities can be inferred by velocity-space tomography which we demonstrate using measurements at JET and ASDEX Upgrade. The measured energy spectra agree well with corresponding simulations. At ITER, alpha-particle energy spectra and densities can be inferred for energies larger than 1.7 MeV by velocity-space tomography based on GRS and CTS. Further, assuming isotropy of the alpha-particles in velocity space, their energy spectra and densities can be inferred by 1D inversion of spectral single-detector measurements down to about 300 keV by CTS. The alpha-particle density can also be found by fitting a model to the CTS measurements assuming the alpha-particle distribution to be an isotropic slowing-down distribution
    corecore