5 research outputs found

    GIS Based Road Traffic Noise Mapping and Assessment of Health Hazards for a Developing Urban Intersection

    No full text
    Determination of health hazards of noise pollution is a challenge for any developing city intersection. The people working at roadside open-air shops or near the congested roads of any intersection face intense noise pollution. It becomes very difficult to efficiently determine the hazards of noise on the health of people living near the intersection. An attempt was made to determine the noise-induced health hazards of the developing city of Bahadurpur, UP, India. The noise levels were monitored over 17 station points of the intersection for three months at different times of the day. Equivalent noise level (Leq) maps were determined within an accuracy of ±4dB. Areas adjacent to intersections indicated noise exposure levels close to 100 dB. Health hazards for the people of the intersection were determined through the testing of auditory and non-auditory health parameters for 100 people. A total of 75–92% of the people who work/live near the noisy intersection were found to be suffering from hearing impairment, tinnitus, sleep disturbance, cardiovascular diseases, hypertension, etc. Whether the recorded health hazards were indeed related to noise exposure was confirmed by testing the health parameters of people from the nearby and less noisy area of Pure Ganga. The nearby site reported mild hazards to the health of the population. An alarming level of hearing impairment was prevalent in the noisy Bahadurpur intersection (79–95%) compared to the same in Pure Ganga (13–30%). The estimated noise-induced health hazards were also compared for noisy and less-noisy study sites using ANOVA statistics. The results suggested that the health hazards reported in the two sites are not similar. Further, the severe hazards to people’s health at the underdeveloped intersection were found to be primarily caused by the intense exposure to noise

    GIS Mapping of Short-Term Noisy Event of Diwali Night in Lucknow City

    No full text
    Noise is a universal problem that is particularly prominent in developing nations like India. Short-term noise-sensitive events like New Year’s Eve, derby matches, DJ night, Diwali night (celebration with firecracker) in India, etc. create lots of noise in a short period. There is a need to come up with a system that can predict the noise level for an area for a short period indicating its detailed variations. GIS (Geographic Information System)-based google maps for terrain data and crowd-sourced or indirect collection of noise data can overcome this challenge to a great extent. Authors have tried to map the highly noisy Diwali night for Lucknow, a northern city of India. The mapping was done by collecting the data from 100 points using the noise capture app (30% were close to the source and 70% were away from the source (receiver). Noise data were predicted for 750 data points using the modeling interpolation technique. A noise map is generated for this Diwali night using the crowd-sourcing technique for Diwali night. The results were also varied with 50 test points and are found to be within ±4.4 dB. Further, a noise map is also developed for the same site using indirect data of noise produced from the air pollution open-sourced data. The produced noise map is also verified with 50 test points and found to be ±6.2 dB. The results are also corroborated with the health assessment survey report of the residents of nearby areas

    Determination of Point-to-Point 3D Routing Algorithm Using LiDAR Data for Noise Prediction

    No full text
    Urban planning, noise propagation modelling, viewshed analysis, etc., require determination of routes or supply lines for propagation. A point-to-point routing algorithm is required to determine the best routes for the propagation of noise levels from source to destination. Various optimization algorithms are present in the literature to determine the shortest route, e.g., Dijkstra, Ant-Colony algorithms, etc. However, these algorithms primarily work over 2D maps and multiple routes. The shortest route determination in 3D from unlabeled data (e.g., precise LiDAR terrain point cloud) is very challenging. The prediction of noise data for a place necessitates extraction of all possible principal routes between every source of noise and its destination, e.g., direct route, the route over the top of the building (or obstruction), routes around the sides of the building, and the reflected routes. It is thus required to develop an algorithm that will determine all the possible routes for propagation, using LiDAR data. The algorithm uses the novel cutting plane technique customized to work with LiDAR data to extract all the principal routes between every pair of noise source and destination. Terrain parameters are determined from routes for modeling. The terrain parameters, and noise data when integrated with a sophisticated noise model give an accurate prediction of noise for a place. The novel point-to-point routing algorithm is developed using LiDAR data of the RGIPT campus. All the shortest routes were tested for their spatial accuracy and efficacy to predict the noise levels accurately. Various routes are found to be accurate within ±9 cm, while predicted noise levels are found to be accurate within ±6 dBA at an instantaneous scale. The novel accurate 3D routing algorithm can improve the other urban applications too

    GIS Mapping of Short-Term Noisy Event of Diwali Night in Lucknow City

    No full text
    Noise is a universal problem that is particularly prominent in developing nations like India. Short-term noise-sensitive events like New Year’s Eve, derby matches, DJ night, Diwali night (celebration with firecracker) in India, etc. create lots of noise in a short period. There is a need to come up with a system that can predict the noise level for an area for a short period indicating its detailed variations. GIS (Geographic Information System)-based google maps for terrain data and crowd-sourced or indirect collection of noise data can overcome this challenge to a great extent. Authors have tried to map the highly noisy Diwali night for Lucknow, a northern city of India. The mapping was done by collecting the data from 100 points using the noise capture app (30% were close to the source and 70% were away from the source (receiver). Noise data were predicted for 750 data points using the modeling interpolation technique. A noise map is generated for this Diwali night using the crowd-sourcing technique for Diwali night. The results were also varied with 50 test points and are found to be within ±4.4 dB. Further, a noise map is also developed for the same site using indirect data of noise produced from the air pollution open-sourced data. The produced noise map is also verified with 50 test points and found to be ±6.2 dB. The results are also corroborated with the health assessment survey report of the residents of nearby areas

    Review of Structural Health Monitoring Techniques in Pipeline and Wind Turbine Industries

    No full text
    There has been enormous growth in the energy sector in the new millennium, and it has enhanced energy demand, creating an exponential rise in the capital investment in the energy industry in the last few years. Regular monitoring of the health of industrial equipment is necessary, and thus, the concept of structural health monitoring (SHM) comes into play. In this paper, the purpose is to highlight the importance of SHM systems and various techniques primarily used in pipelining industries. There have been several advancements in SHM systems over the years such as Point OFS (optical fiber sensor) for Corrosion, Distributed OFS for physical and chemical sensing, etc. However, these advanced SHM technologies are at their nascent stages of development, and thus, there are several challenges that exist in the industries. The techniques based on acoustic, UAVs (Unmanned Aerial Vehicles), etc. bring in various challenges, as it becomes daunting to monitor the deformations from both sides by employing only one technique. In order to determine the damages well in advance, it is necessary that the sensor is positioned inside the pipes and gives the operators enough time to carry out the troubleshooting. However, the mentioned technologies have been unable to indicate the errors, and thus, there is the requirement for a newer technology to be developed. The purpose of this review manuscript is to enlighten the readers about the importance of structural health monitoring in pipeline and wind turbine industries
    corecore