223 research outputs found
CFHTLS weak-lensing constraints on the neutrino masses
We use measurements of cosmic shear from CFHTLS, combined with WMAP-5 cosmic
microwave background anisotropy data, baryonic acoustic oscillations from SDSS
and 2dFGRS and supernovae data from SNLS and Gold-set, to constrain the
neutrino mass. We obtain a 95% confidence level upper limit of 0.54 eV for the
sum of the neutrino masses, and a lower limit of 0.03 eV. The preference for
massive neutrinos vanishes when shear-measurement systematics are included in
the analysis.Comment: 10 pages. Published versio
Mitogenomes from Egyptian Cattle Breeds: New Clues on the Origin of Haplogroup Q and the Early Spread of Bos taurus from the Near East
Background
Genetic studies support the scenario that Bos taurus domestication occurred in the Near East during the Neolithic transition about 10 thousand years (ky) ago, with the likely exception of a minor secondary event in Italy. However, despite the proven effectiveness of whole mitochondrial genome data in providing valuable information concerning the origin of taurine cattle, until now no population surveys have been carried out at the level of mitogenomes in local breeds from the Near East or surrounding areas. Egypt is in close geographic and cultural proximity to the Near East, in particular the Nile Delta region, and was one of the first neighboring areas to adopt the Neolithic package. Thus, a survey of mitogenome variation of autochthonous taurine breeds from the Nile Delta region might provide new insights on the early spread of cattle rearing outside the Near East.
Methodology
Using Illumina high-throughput sequencing we characterized the mitogenomes from two cattle breeds, Menofi (N = 17) and Domiaty (N = 14), from the Nile Delta region. Phylogenetic and Bayesian analyses were subsequently performed.
Conclusions
Phylogenetic analyses of the 31 mitogenomes confirmed the prevalence of haplogroup T1, similar to most African cattle breeds, but showed also high frequencies for haplogroups T2, T3 and Q1, and an extremely high haplotype diversity, while Bayesian skyline plots pointed to a main episode of population growth ~12.5 ky ago. Comparisons of Nile Delta mitogenomes with those from other geographic areas revealed that (i) most Egyptian mtDNAs are probably direct local derivatives from the founder domestic herds which first arrived from the Near East and the extent of gene flow from and towards the Nile Delta region was limited after the initial founding event(s); (ii) haplogroup Q1 was among these founders, thus proving that it underwent domestication in the Near East together with the founders of the T clades
A Cell-Free Microtiter Plate Screen for Improved [FeFe] Hydrogenases
, a potential renewable fuel. Attempts to exploit these catalysts in engineered systems have been hindered by the biotechnologically inconvenient properties of the natural enzymes, including their extreme oxygen sensitivity. Directed evolution has been used to improve the characteristics of a range of natural catalysts, but has been largely unsuccessful for [FeFe] hydrogenases because of a lack of convenient screening platforms. [FeFe] hydrogenase HydA1 with a specific activity ∼4 times that of the wild-type enzyme. cell extracts, which allows unhindered access to the protein maturation and assay environment
Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers
Articles in International JournalsBackground: Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions.
Methods: A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAOrecommended
microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity.
Results: Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in
breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships
revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion.
However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and
between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher
priority for conservation than the European groups of breeds.
Conclusions: Conservation priorities differed significantly according to the weight given to within- and betweenbreed
genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their
products should be taken into consideration to ensure their long-term survival
Women's Education Level, Maternal Health Facilities, Abortion Legislation and Maternal Deaths: A Natural Experiment in Chile from 1957 to 2007
The aim of this study was to assess the main factors related to maternal mortality reduction in large time series available in Chile in context of the United Nations' Millennium Development Goals (MDGs).Time series of maternal mortality ratio (MMR) from official data (National Institute of Statistics, 1957-2007) along with parallel time series of education years, income per capita, fertility rate (TFR), birth order, clean water, sanitary sewer, and delivery by skilled attendants were analysed using autoregressive models (ARIMA). Historical changes on the mortality trend including the effect of different educational and maternal health policies implemented in 1965, and legislation that prohibited abortion in 1989 were assessed utilizing segmented regression techniques.During the 50-year study period, the MMR decreased from 293.7 to 18.2/100,000 live births, a decrease of 93.8%. Women's education level modulated the effects of TFR, birth order, delivery by skilled attendants, clean water, and sanitary sewer access. In the fully adjusted model, for every additional year of maternal education there was a corresponding decrease in the MMR of 29.3/100,000 live births. A rapid phase of decline between 1965 and 1981 (-13.29/100,000 live births each year) and a slow phase between 1981 and 2007 (-1.59/100,000 live births each year) were identified. After abortion was prohibited, the MMR decreased from 41.3 to 12.7 per 100,000 live births (-69.2%). The slope of the MMR did not appear to be altered by the change in abortion law.Increasing education level appears to favourably impact the downward trend in the MMR, modulating other key factors such as access and utilization of maternal health facilities, changes in women's reproductive behaviour and improvements of the sanitary system. Consequently, different MDGs can act synergistically to improve maternal health. The reduction in the MMR is not related to the legal status of abortion
Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment
The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments
- …