7,501 research outputs found

    On principal hook length partitions and durfee sizes in skew characters

    Full text link
    In this paper we construct for a given arbitrary skew diagram A all partitions nu with maximal principal hook lengths among all partitions with the character [nu] appearing in the skew character [A]. Furthermore we show that these are also partitions with minimal Durfee size. This we use to give the maximal Durfee size for [nu] appearing in [A] for the cases when A decays into two partitions and for some special cases of A. Also this gives conditions for two skew diagrams to represent the same skew character.Comment: 13 pages, minor changes from v1 to v2 as suggested by the referee, to appear in Annals. Com

    Quasi-rigidity: some uniqueness issues

    Full text link
    Quasi-rigidity means that one builds a theory for assemblies of grains under a slowly changing external load by using the deformation of those grains as a small parameter. Is quasi-rigidity a complete theory for these granular assemblies? Does it provide unique predictions of the assembly's behavior, or must some other process be invoked to decide between several possibilities? We provide evidence that quasi-rigidity is a complete theory by showing that two possible sources of indeterminacy do not exist for the case of disk shaped grains. One possible source of indeterminacy arises from zero-frequency modes present in the packing. This problem can be solved by considering the conditions required to obtain force equilibrium. A second possible source of indeterminacy is the necessity to choose the status (sliding or non-sliding) at each contact. We show that only one choice is permitted, if contacts slide only when required by Coulomb friction.Comment: 14 pages, 3 figures, submitted to Phys Rev E (introduction and conclusion revised

    Effects of Velocity Correlation on Early Stage of Free Cooling Process of Inelastic Hard Sphere System

    Full text link
    The free cooling process in the inelastic hard sphere system is studied by analysing the data from large scale molecular dynamics simulations on a three dimensional system. The initial energy decay, the velocity distribution function, and the velocity correlation functions are calculated to be compared with theoretical predictions. The energy decay rate in the homogeneous cooling state is slightly but distinctively smaller than that expected from the independent collision assumption. The form of the one particle velocity distribution is found not to be stationary. These contradict to the predictions of the kinetic theory based on the Enskog-Boltzmann equation and suggest that the velocity correlation is already important in the early stage of homogeneous cooling state. The energy decay rate is analysed in terms of the velocity correlation.Comment: 9 pages (figures included). To be published in J. Phys. Soc. Jpn. Vol. 73 No. 1 (2004) Added two references and removed one. Changed the name of T_{L}. Added unit constants in Sec. 5 and

    Homogeneous cooling of rough, dissipative particles: Theory and simulations

    Get PDF
    We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an event driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of a generalized homogeneous cooling state. For short times tt, translational and rotational energy are found to change linearly with tt. For large times both energies decay like t2t^{-2} with a ratio independent of time, but not corresponding to equipartition. Good agreement is found between theory and simulations, as long as no clustering instability is observed. System parameters, i.e. density, particle size, and particle mass can be absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure

    X-ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy's Active Nucleus

    Get PDF
    A 227 ksec Chandra Observatory X-ray image of the hot plasma in the Hydra A cluster has revealed an extensive cavity system. The system was created by a continuous outflow or a series of bursts from the nucleus of the central galaxy over the past 200-500 Myr. The cavities have displaced 10% of the plasma within a 300 kpc radius of the central galaxy, creating a swiss-cheese-like topology in the hot gas. The surface brightness decrements are consistent with empty cavities oriented within 40 degrees of the plane of the sky. The outflow has deposited upward of 10^61 erg into the cluster gas, most of which was propelled beyond the inner ~100 kpc cooling region. The supermassive black hole has accreted at a rate of approximately 0.1-0.25 solar masses per year over this time frame, which is a small fraction of the Eddington rate of a ~10^9 solar mass black hole, but is dramatically larger than the Bondi rate. Given the previous evidence for a circumnuclear disk of cold gas in Hydra A, these results are consistent with the AGN being powered primarily by infalling cold gas. The cavity system is shadowed perfectly by 330 MHz radio emission. Such low frequency synchrotron emission may be an excellent proxy for X-ray cavities and thus the total energy liberated by the supermassive black hole.Comment: 8 pages, 3 figures; Submitted to ApJ, revised per referee's suggestion

    Spatial Correlations in Compressible Granular Flows

    Get PDF
    For a freely evolving granular fluid, the buildup of spatial correlations in density and flow field is described using fluctuating hydrodynamics. The theory for incompressible flows is extended to the general, compressible case, including longitudinal velocity and density fluctuations, and yields qualitatively different results for long range correlations. The structure factor of density fluctuations shows a maximum at finite wavenumber, shifting in time to smaller wavenumbers and corresponding to a growing correlation length. It agrees well with two-dimensional molecular dynamics simulations.Comment: 12 pages, Latex, 3 figure

    Energy flows in vibrated granular media

    Full text link
    We study vibrated granular media, investigating each of the three components of the energy flow: particle-particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by interparticle collisions is well estimated by existing theories when the granular material is dilute, and these theories are extended to include rotational kinetic energy. When the granular material is dense, the observed particle-particle dissipation rate decreases to as little as 2/5 of the theoretical prediction. We observe that the rate of energy input is the weight of the granular material times an average vibration velocity times a function of the ratio of particle to vibration velocity. `Particle-wall' dissipation has been neglected in all theories up to now, but can play an important role when the granular material is dilute. The ratio between gravitational potential energy and kinetic energy can vary by as much as a factor of 3. Previous simulations and experiments have shown that E ~ V^delta, with delta=2 for dilute granular material, and delta ~ 1.5 for dense granular material. We relate this change in exponent to the departure of particle-particle dissipation from its theoretical value.Comment: 19 pages revtex, 10 embedded eps figures, accepted by PR

    The powerful outburst in Hercules A

    Get PDF
    The radio source Hercules A resides at the center of a cooling flow cluster of galaxies at redshift z = 0.154. A Chandra X-ray image reveals a shock front in the intracluster medium (ICM) surrounding the radio source, about 160 kpc from the active galactic nucleus (AGN) that hosts it. The shock has a Mach number of 1.65, making it the strongest of the cluster-scale shocks driven by an AGN outburst found so far. The age of the outburst ~5.9e7 y, its energy about 3e61 erg and its mean power ~1.6e46 erg/s. As for the other large AGN outbursts in cooling flow clusters, this outburst overwhelms radiative losses from the ICM of the Hercules A cluster by a factor of ~100. It adds to the case that AGN outbursts are a significant source of preheating for the ICM. Unless the mechanical efficiency of the AGN in Hercules A exceeds 10%, the central black hole must have grown by more than 1.7e8 Msun to power this one outburst.Comment: 4 pages, 5 figures, accepted by ApJ
    corecore