82 research outputs found
Effect of Non-Rubber Constituents on Guayule and Hevea Rubber Intrinsic Properties
To meet the increasing demand for natural rubber (NR), currently sourced from the tropical rubber tree Hevea brasiliensis, and address price volatility and steadily increasing labor costs, alternate rubber-producing species are in commercial development. One of these, guayule (Parthenium argentatum), has emerged on the market as a commercial source of high quality rubber. Non-rubber constituents play an important role in the physical properties of NR products. The intrinsic composition of the two NR materials differs and these differences may be a principal cause of the performance differences between them.We have compared the effect of non-rubber constituents, such as protein, lipids, resin and rubber particle membranes. Firstly, a film casting method was developed to obtain rubber films with a uniform thickness. Secondly, the glass transition temperature of different rubbers was determined by dynamic mechanical analysis, and tensile properties were tested for uncompounded materials. Guayule natural rubber (GNR), from which most of the membranes were removed while in latex form (MRGNR) was found to have higher intrinsic strength than GNR or gel-free NR (FNR). An acetone extraction was performed to quantify the resin and free lipids in the rubber samples
Recommended from our members
Characterization of a Tunable Quasi-Monoenergetic Neutron Beamfrom Deuteron Breakup
A neutron irradiation facility is being developed at the88-Inch Cyclotron at Lawrence Berkeley National Laboratory for thepurposes of measuring neutron reaction cross sections on radioactivetargets and for radiation effects testing. Applications are of benefit tostockpile stewardship, nuclear astrophysics, next generation advancedfuel reactors, and cosmic radiation biology and electronics in space. Thefacility will supply a tunable, quasi-monoenergetic neutron beam in therange of 10-30 MeV or a white neutron source, produced by deuteronbreakup reactions on thin and thick targets, respectively. Because thedeuteron breakup reaction has not been well studied at intermediateincident deuteron energies, above the target Coulomb barrier and below 56MeV, a detailed characterization was necessary of the neutron spectraproduced by thin targets.Neutron time of flight (TOF) methods have beenused to measure the neutron spectra produced on thin targets of low-Z(titanium) and high-Z (tantalum) materials at incident deuteron energiesof 20 MeV and 29 MeV at 0 deg. Breakup neutrons at both energies fromlow-Z targets appear to peak at roughly half of the available kineticenergy, while neutrons from high-Z interactions peak somewhat lower inenergy, owing to the increased proton energy due to breakup within theCoulomb field. Furthermore, neutron spectra appear narrower for high-Ztargets. These centroids are consistent with recent preliminary protonenergy measurements using silicon telescope detectors conducted at LBNL,though there is a notable discrepancy with spectral widths
Low-frequency incommensurate magnetic response in strongly correlated systems
It is shown that in the t-J model of Cu-O planes at low frequencies the
dynamic spin structure factor is peaked at incommensurate wave vectors
(1/2+-delta,1/2)$, (1/2,1/2+-delta). The incommensurability is connected with
the momentum dependencies of the magnon frequency and damping near the
antiferromagnetic wave vector. The behavior of the incommensurate peaks is
similar to that observed in La_{2-x}(Ba,Sr)_xCuO_{4+y} and YBa_2Cu_3O_{7-y}:
for hole concentrations 0.02<x<=0.12 we find that delta is nearly proportional
to x, while for x>0.12 it tends to saturation. The incommensurability
disappears with increasing temperature. Generally the incommensurate magnetic
response is not accompanied by an inhomogeneity of the carrier density.Comment: 4 pages, 4 figure
Doping-dependent study of the periodic Anderson model in three dimensions
We study a simple model for -electron systems, the three-dimensional
periodic Anderson model, in which localized states hybridize with
neighboring states. The states have a strong on-site repulsion which
suppresses the double occupancy and can lead to the formation of a Mott-Hubbard
insulator. When the hybridization between the and states increases, the
effects of these strong electron correlations gradually diminish, giving rise
to interesting phenomena on the way. We use the exact quantum Monte-Carlo,
approximate diagrammatic fluctuation-exchange approximation, and mean-field
Hartree-Fock methods to calculate the local moment, entropy, antiferromagnetic
structure factor, singlet-correlator, and internal energy as a function of the
hybridization for various dopings. Finally, we discuss the relevance of
this work to the volume-collapse phenomenon experimentally observed in
f-electron systems.Comment: 12 pages, 8 figure
Resonance peak in underdoped cuprates
The magnetic susceptibility measured in neutron scattering experiments in
underdoped YBaCuO is interpreted based on the self-consistent
solution of the t-J model of a Cu-O plane. The calculations reproduce correctly
the frequency and momentum dependencies of the susceptibility and its variation
with doping and temperature in the normal and superconducting states. This
allows us to interpret the maximum in the frequency dependence -- the resonance
peak -- as a manifestation of the excitation branch of localized Cu spins and
to relate the frequency of the maximum to the size of the spin gap. The
low-frequency shoulder well resolved in the susceptibility of superconducting
crystals is connected with a pronounced maximum in the damping of the spin
excitations. This maximum is caused by intense quasiparticle peaks in the hole
spectral function for momenta near the Fermi surface and by the nesting.Comment: 9 pages, 6 figure
Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory
Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications
Preembryo Personhood: An Assessment of the President’s Council Arguments
The President’s Council on Bioethics has addressed the moral status of human preembryos in its reports on stem cell research and human therapeutic cloning. Although the Council has been criticized for being hand-picked to favor the right-to-life viewpoint concerning human preembryos, it has embraced the idea that the right-to-life position should be defended in secular terms. This is an important feature of the Council’s work, and it demonstrates a recognition of the need for genuine engagement between opposing sides in the debate over stem cell research. To promote this engagement, the Council has stated in secular terms several arguments for the personhood of human preembryos. This essay presents and critiques those arguments, and it concludes that they are unsuccessful. If the best arguments in support of the personhood of human preembryos have been presented by the Council, then there are no reasonable secular arguments in support of that view
Lambda Hyperons in 2 A*GeV Ni + Cu Collisions
A sample of Lambda's produced in 2 A*GeV Ni + Cu collisions has been obtained
with the EOS Time Projection Chamber at the Bevalac. Low background in the
invariant mass distribution allows for the unambiguous demonstration of Lambda
directed flow. The transverse mass spectrum at mid-rapidity has the
characteristic shoulder-arm shape of particles undergoing radial transverse
expansion. A linear dependence of Lambda multiplicity on impact parameter is
observed, from which a total Lambda + Sigma^0 production cross section of $112
+/- 24 mb is deduced. Detailed comparisons with the ARC and RVUU models are
made.Comment: Revised version accepted for publication in Phys. Lett.
New results on fission cross sections in actinide nuclei using the surrogate ratio method and on conversion coefficients in triaxial strongly deformed bands in167Lu from ice ball and gammasphere
The surrogate ratio technique is described. New results for neutron induced fission cross sections on actinide nuclei, obtained using this technique are presented. The results benchmark the surrogate ratio technique and indicate that the method is accurate to within 5% over a wide energy range. New results for internal conversion coefficients in triaxial strongly deformed bands in 167Lu are also presented
- …