11 research outputs found
Targeting metabolic health promotion to optimise maternal and offspring health
There is an increase in maternal metabolic burden due to the rise in pregnancies complicated by obesity, gestational diabetes, type 2 diabetes and polycystic ovary syndrome. Metabolic dysfunction during pregnancy is associated with increased risks of long-term morbidity and mortality for women and their offspring. Lifestyle interventions in pregnancy in women at risk of metabolic dysfunction have demonstrated short-term improvements such as reduced gestational weight gain and lowered risk of gestational diabetes. It is not known whether these interventions lead to sustained improvements in the metabolic health of the mother and baby. Pharmacological interventions have also shown benefits for the mother and baby in pregnancy, including improvements in glycaemic control, reduction in gestational weight gain and reduction in large for gestational age infants; however, there remains uncertainty over long-term outcomes for mother and child. Existing studies on interventions targeting metabolic health are limited to selected populations in the preconception and postpartum periods and lack follow-up beyond delivery of the intervention. The COVID-19 pandemic has refocused our attention on the effects of maternal metabolic ill-health that play a role in contributing to premature morbidity and mortality. There is an urgent need for strategies to accurately identify the growing number of women and offspring at risk of long-term adverse metabolic health. Strategies which focus on early identification and risk stratification using individualised risk scores in the pre and inter-conception periods must take priority if we are to target and improve the metabolic health of women and their offspring who are at highest risk
Recommended from our members
Precision gestational diabetes treatment: a systematic review and meta-analyses
Background: Gestational Diabetes Mellitus (GDM) affects approximately 1 in 7 pregnancies globally. It is associated with short- and long-term risks for both mother and baby. Therefore, optimizing treatment to effectively treat the condition has wide-ranging beneficial effects. However, despite the known heterogeneity in GDM, treatment guidelines and approaches are generally standardized. We hypothesized that a precision medicine approach could be a tool for risk-stratification of women to streamline successful GDM management. With the relatively short timeframe available to treat GDM, commencing effective therapy earlier, with more rapid normalization of hyperglycaemia, could have benefits for both mother and fetus. Methods: We conducted two systematic reviews, to identify precision markers that may predict effective lifestyle and pharmacological interventions. Results: There was a paucity of studies examining precision lifestyle-based interventions for GDM highlighting the pressing need for further research in this area. We found a number of precision markers identified from routine clinical measures that may enable earlier identification of those requiring escalation of pharmacological therapy (to metformin, sulphonylureas or insulin). This included previous history of GDM, Body Mass Index and blood glucose concentrations at diagnosis. Conclusions: Clinical measurements at diagnosis could potentially be used as precision markers in the treatment of GDM. Whether there are other sensitive markers that could be identified using more complex individual-level data, such as omics, and if these can feasibly be implemented in clinical practice remains unknown. These will be important to consider in future studies
Recommended from our members
Precision gestational diabetes treatment: a systematic review and meta-analyses.
BACKGROUND: Gestational Diabetes Mellitus (GDM) affects approximately 1 in 7 pregnancies globally. It is associated with short- and long-term risks for both mother and baby. Therefore, optimizing treatment to effectively treat the condition has wide-ranging beneficial effects. However, despite the known heterogeneity in GDM, treatment guidelines and approaches are generally standardized. We hypothesized that a precision medicine approach could be a tool for risk-stratification of women to streamline successful GDM management. With the relatively short timeframe available to treat GDM, commencing effective therapy earlier, with more rapid normalization of hyperglycaemia, could have benefits for both mother and fetus. METHODS: We conducted two systematic reviews, to identify precision markers that may predict effective lifestyle and pharmacological interventions. RESULTS: There was a paucity of studies examining precision lifestyle-based interventions for GDM highlighting the pressing need for further research in this area. We found a number of precision markers identified from routine clinical measures that may enable earlier identification of those requiring escalation of pharmacological therapy (to metformin, sulphonylureas or insulin). This included previous history of GDM, Body Mass Index and blood glucose concentrations at diagnosis. CONCLUSIONS: Clinical measurements at diagnosis could potentially be used as precision markers in the treatment of GDM. Whether there are other sensitive markers that could be identified using more complex individual-level data, such as omics, and if these can feasibly be implemented in clinical practice remains unknown. These will be important to consider in future studies
Impact of COVIDâ19 on gestational diabetes pregnancy outcomes in the UK : a multicentre retrospective cohort study
Objective
To determine the impact of implementing emergency care pathway(s) for screening, diagnosing and managing women with gestational diabetes (GDM) during COVID-19.
Design
Retrospective multicentre cohort.
Setting
Nine National Health Service (NHS) Hospital Trusts/Health boards in England and Scotland.
Population
4915 women with GDM pre-pandemic (1 April 2018 to 31 March 2020), and 3467 women with GDM during the pandemic (1 May 2020 to 31 March 2021).
Methods
We examined clinical outcomes for women with GDM prior to and during the pandemic following changes in screening methods, diagnostic testing, glucose thresholds and introduction of virtual care for monitoring of antenatal glycaemia.
Main Outcome Measures
Intervention at birth, perinatal mortality, large-for-gestational-age infants and neonatal unit admission.
Results
The new diagnostic criteria more often identified GDM women who were multiparous, had higher body mass index (BMI) and greater deprivation, and less frequently had previous GDM (all pâ<â0.05). During COVID, these women had no differences in the key outcome measures. Of the women, 3% were identified with pre-existing diabetes at antenatal booking. Where OGTT continued during COVID, but virtual care was introduced, outcomes were also similar pre- and during the pandemic.
Conclusions
Using HbA1c and fasting glucose identified a higher risk GDM population during the pandemic but this had minimal impact on pregnancy outcomes. The high prevalence of undiagnosed pre-existing diabetes suggests that women with GDM risk factors should be offered HbA1c screening in early pregnancy
Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.</p
Recommended from our members
Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine
Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
Abstract: Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine. A systematic review of evidence, across the key pillars of prevention, diagnosis, treatment and prognosis, outlines milestones that need to be met to enable the broad clinical implementation of precision medicine in diabetes care
Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.</p