6 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Impact of video-assisted thoracoscopic lobectomy versus open lobectomy for lung cancer on recovery assessed using self-reported physical function: VIOLET RCT

    No full text
    Background: Lung cancer is the leading cause of cancer death. Surgery remains the main method of managing early-stage disease. Minimal-access video-assisted thoracoscopic surgery results in less tissue trauma than open surgery; however, it is not known if it improves patient outcomes. Objective: To compare the clinical effectiveness and cost-effectiveness of video-assisted thoracoscopic surgery lobectomy with open surgery for the treatment of lung cancer. Design, setting and participants: A multicentre, superiority, parallel-group, randomised controlled trial with blinding of participants (until hospital discharge) and outcome assessors conducted in nine NHS hospitals. Adults referred for lung resection for known or suspected lung cancer, with disease suitable for both surgeries, were eligible. Participants were followed up for 1 year. Interventions: Participants were randomised 1 : 1 to video-assisted thoracoscopic surgery lobectomy or open surgery. Video-assisted thoracoscopic surgery used one to four keyhole incisions without rib spreading. Open surgery used a single incision with rib spreading, with or without rib resection. Main outcome measures: The primary outcome was self-reported physical function (using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30) at 5 weeks. Secondary outcomes included upstaging to pathologic node stage 2 disease, time from surgery to hospital discharge, pain in the first 2 days, prolonged pain requiring analgesia at > 5 weeks, adverse health events, uptake of adjuvant treatment, overall and disease-free survival, quality of life (Quality of Life Questionnaire Core 30, Quality of Life Questionnaire Lung Cancer 13 and EQ-5D) at 2 and 5 weeks and 3, 6 and 12 months, and cost-effectiveness. Results: A total of 503 patients were randomised between July 2015 and February 2019 (video-assisted thoracoscopic surgery, n = 247; open surgery, n = 256). One participant withdrew before surgery. The mean age of patients was 69 years; 249 (49.5%) patients were men and 242 (48.1%) did not have a confirmed diagnosis. Lobectomy was performed in 453 of 502 (90.2%) participants and complete resection was achieved in 429 of 439 (97.7%) participants. Quality of Life Questionnaire Core 30 physical function was better in the video-assisted thoracoscopic surgery group than in the open-surgery group at 5 weeks (video-assisted thoracoscopic surgery, n = 247; open surgery, n = 255; mean difference 4.65, 95% confidence interval 1.69 to 7.61; p = 0.0089). Upstaging from clinical node stage 0 to pathologic node stage 1 and from clinical node stage 0 or 1 to pathologic node stage 2 was similar (p ≥ 0.50). Pain scores were similar on day 1, but lower in the video-assisted thoracoscopic surgery group on day 2 (mean difference –0.54, 95% confidence interval –0.99 to –0.09; p = 0.018). Analgesic consumption was 10% lower (95% CI –20% to 1%) and the median hospital stay was less (4 vs. 5 days, hazard ratio 1.34, 95% confidence interval 1.09, 1.65; p = 0.006) in the video-assisted thoracoscopic surgery group than in the open-surgery group. Prolonged pain was also less (relative risk 0.82, 95% confidence interval 0.72 to 0.94; p = 0.003). Time to uptake of adjuvant treatment, overall survival and progression-free survival were similar (p ≥ 0.28). Fewer participants in the video-assisted thoracoscopic surgery group than in the open-surgery group experienced complications before and after discharge from hospital (relative risk 0.74, 95% confidence interval 0.66 to 0.84; p < 0.001 and relative risk 0.81, 95% confidence interval 0.66 to 1.00; p = 0.053, respectively). Quality of life to 1 year was better across several domains in the video-assisted thoracoscopic surgery group than in the open-surgery group. The probability that video-assisted thoracoscopic surgery is cost-effective at a willingness-to-pay threshold of £20,000 per quality-adjusted life-year is 1. Limitations: Ethnic minorities were under-represented compared with the UK population (< 5%), but the cohort reflected the lung cancer population. Conclusions: Video-assisted thoracoscopic surgery lobectomy was associated with less pain, fewer complications and better quality of life without any compromise to oncologic outcome. Use of video-assisted thoracoscopic surgery is highly likely to be cost-effective for the NHS. Future work: Evaluation of the efficacy of video-assisted thoracoscopic surgery with robotic assistance, which is being offered in many hospitals. Trial registration: This trial is registered as ISRCTN13472721. Funding: This project was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 48. See the NIHR Journals Library website for further project information

    Impact of video-assisted thoracoscopic lobectomy versus open lobectomy for lung cancer on recovery assessed using self-reported physical function: VIOLET RCT

    No full text
    BackgroundLung cancer is the leading cause of cancer death. Surgery remains the main method of managing early-stage disease. Minimal-access video-assisted thoracoscopic surgery results in less tissue trauma than open surgery; however, it is not known if it improves patient outcomes.ObjectiveTo compare the clinical effectiveness and cost-effectiveness of video-assisted thoracoscopic surgery lobectomy with open surgery for the treatment of lung cancer.Design, setting and participantsA multicentre, superiority, parallel-group, randomised controlled trial with blinding of participants (until hospital discharge) and outcome assessors conducted in nine NHS hospitals. Adults referred for lung resection for known or suspected lung cancer, with disease suitable for both surgeries, were eligible. Participants were followed up for 1 year.InterventionsParticipants were randomised 1 : 1 to video-assisted thoracoscopic surgery lobectomy or open surgery. Video-assisted thoracoscopic surgery used one to four keyhole incisions without rib spreading. Open surgery used a single incision with rib spreading, with or without rib resection.Main outcome measuresThe primary outcome was self-reported physical function (using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire Core 30) at 5 weeks. Secondary outcomes included upstaging to pathologic node stage 2 disease, time from surgery to hospital discharge, pain in the first 2 days, prolonged pain requiring analgesia at &gt; 5 weeks, adverse health events, uptake of adjuvant treatment, overall and disease-free survival, quality of life (Quality of Life Questionnaire Core 30, Quality of Life Questionnaire Lung Cancer 13 and EQ-5D) at 2 and 5 weeks and 3, 6 and 12 months, and cost-effectiveness.ResultsA total of 503 patients were randomised between July 2015 and February 2019 (video-assisted thoracoscopic surgery, n = 247; open surgery, n = 256). One participant withdrew before surgery. The mean age of patients was 69 years; 249 (49.5%) patients were men and 242 (48.1%) did not have a confirmed diagnosis. Lobectomy was performed in 453 of 502 (90.2%) participants and complete resection was achieved in 429 of 439 (97.7%) participants. Quality of Life Questionnaire Core 30 physical function was better in the video-assisted thoracoscopic surgery group than in the open-surgery group at 5 weeks (video-assisted thoracoscopic surgery, n = 247; open surgery, n = 255; mean difference 4.65, 95% confidence interval 1.69 to 7.61; p = 0.0089). Upstaging from clinical node stage 0 to pathologic node stage 1 and from clinical node stage 0 or 1 to pathologic node stage 2 was similar (p ≥ 0.50). Pain scores were similar on day 1, but lower in the video-assisted thoracoscopic surgery group on day 2 (mean difference –0.54, 95% confidence interval –0.99 to –0.09; p = 0.018). Analgesic consumption was 10% lower (95% CI –20% to 1%) and the median hospital stay was less (4 vs. 5 days, hazard ratio 1.34, 95% confidence interval 1.09, 1.65; p = 0.006) in the video-assisted thoracoscopic surgery group than in the open-surgery group. Prolonged pain was also less (relative risk 0.82, 95% confidence interval 0.72 to 0.94; p = 0.003). Time to uptake of adjuvant treatment, overall survival and progression-free survival were similar (p ≥ 0.28). Fewer participants in the video-assisted thoracoscopic surgery group than in the open-surgery group experienced complications before and after discharge from hospital (relative risk 0.74, 95% confidence interval 0.66 to 0.84; p &lt; 0.001 and relative risk 0.81, 95% confidence interval 0.66 to 1.00; p = 0.053, respectively). Quality of life to 1 year was better across several domains in the video-assisted thoracoscopic surgery group than in the open-surgery group. The probability that video-assisted thoracoscopic surgery is cost-effective at a willingness-to-pay threshold of £20,000 per quality-adjusted life-year is 1.LimitationsEthnic minorities were under-represented compared with the UK population (&lt; 5%), but the cohort reflected the lung cancer population.ConclusionsVideo-assisted thoracoscopic surgery lobectomy was associated with less pain, fewer complications and better quality of life without any compromise to oncologic outcome. Use of video-assisted thoracoscopic surgery is highly likely to be cost-effective for the NHS.Future workEvaluation of the efficacy of video-assisted thoracoscopic surgery with robotic assistance, which is being offered in many hospitals.Trial registrationThis trial is registered as ISRCTN13472721
    corecore